Analiza izazvanog dinamičkog ponašanja funkcionalno stepenovanih greda pod harmoničnim pokretnim opterećenjem na elastičnoj osnovi pomoću metode konačnih elemenata
Sažetak
Uvod/cilj: U radu je predstavljeno numeričko ispitivanje izazvanog dinamičkog ponašanja funkcionalno stepenovane grede podvrgnute harmonično promenljivoj i transferzalno koncentrisanoj pokretnoj sili uz korišćenje teorije deformacije smicanjem višeg reda.
Metode: Najvažnije jednačine izvedene su pomoću Hamiltonovog principa, a zatim transformisane u slabi oblik pomoću metode Galerkina. Problem je rešen korišćenjem metode konačnih elemenata putem razvijanja konačnog elementa sa tri čvora od kojih svaki ima četiri stepena slobode. Za integraciju u vremenu izabrana je Njumarkova beta-metoda, a za integraciju u prostoru Gausova metoda.
Rezultati: Ispitan je uticaj nekoliko parametara, uključujući vitkost, indeks materijala i krutost, kao i brzinu i frekvenciju pokretnog opterećenja. Uočeno je dobro slaganje sa rezultatima iz literature.
Zaključak: Ovo ispitivanje ilustruje značaj korišćenja teorije višeg reda u slučaju kratkih greda i jasno ukazuje na promenu u ponašanju funkcionalno stepenovane grede zavisno od različitih parametara.
Reference
Barati, M.R., Faleh, N.M. & Zenkour, A.M. 2019. Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory. Mechanics of Advanced Materials and Structures, 26(19), pp.1661-1669. Available at: https://doi.org/10.1080/15376494.2018.1444234.
Barati, M.R. & Zenkour, A. 2018. Forced vibration of sinusoidal FG nanobeams resting on hybrid Kerr foundation in hygro-thermal environments. Mechanics of Advanced Materials and Structures, 25(8), pp.669-680. Available at: https://doi.org/10.1080/15376494.2017.1308603.
Berrabah, H.M. & Bouderba, B. 2023. Mechanical buckling analysis of functionally graded plates using an accurate shear deformation theory. Mechanics of Advanced Materials and Structures, 30(22), pp.4652-4662. Available at: https://doi.org/10.1080/15376494.2022.2102701.
Beskou, N.D. & Muho, E.V. 2018. Dynamic response of a finite beam resting on a Winkler foundation to a load moving on its surface with variable speed. Soil Dynamics and Earthquake Engineering, 109, pp.222-226. Available at: https://doi.org/10.1016/j.soildyn.2018.02.033.
Chen, W.Q., Lü, C.F. & Bian, Z.G. 2004. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10), pp.877-890. Available at: https://doi.org/10.1016/j.apm.2004.04.001.
Chopra, A.K. 2014. Dynamics of Structures: Theory and Applications to Earthquake Engineering, fourth edition. Pearson. ISBN: 978-0-273-77424-2.
Ebrahimi, F. & Jafari, A. 2018. A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities. Mechanics of Advanced Materials and Structures, 25(3), pp.212-224. Available at: https://doi.org/10.1080/15376494.2016.1255820.
El Khouddar, Y., Adri, A., Outassafte, O., Rifai, S. & Benamar, R. 2023. An analytical approach to geometrically nonlinear free and forced vibration of piezoelectric functional gradient beams resting on elastic foundations in thermal environments. Mechanics of Advanced Materials and Structures, 30(1), pp.131-143. Available at: https://doi.org/10.1080/15376494.2021.2009601.
Esen, I. 2019. Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. International Journal of Mechanical Sciences, 153-154, pp.21-35. Available at: https://doi.org/10.1016/j.ijmecsci.2019.01.033.
Esen, I., Eltaher, M.A. & Abdelrahman, A.A. 2023. Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass. Mechanics Based Design of Structures and Machines, 51(5), pp.2607-2631. Available at: https://doi.org/10.1080/15397734.2021.1904255.
Fuchiyama, T. & Noda, N. 1995. Analysis of thermal stress in a plate of functionally gradient material. JSAE Review, 16(3), pp.263-268. Available at: https://doi.org/10.1016/0389-4304(95)00013-W.
Gan, B.S., Kien, N.D. & Ha, L.T. 2017. Effect of Intermediate Elastic Support on Vibration of Functionally Graded Euler-Bernoulli Beams Excited by a Moving Point Load. Journal of Asian Architecture and Building Engineering, 16(2), pp.363-369. Available at: https://doi.org/10.3130/jaabe.16.363.
Guo, L., Xin, X., Shahsavari, D. & Karami, B. 2022. Dynamic response of porous E-FGM thick microplate resting on elastic foundation subjected to moving load with acceleration. Thin-Walled Structures, 173, art.number:108981. Available at: https://doi.org/10.1016/j.tws.2022.108981.
Hasheminejad, S.M. & Rafsanjani, A. 2009. Three-Dimensional Vibration Analysis of Thick FGM Plate Strips Under Moving Line Loads. Mechanics of Advanced Materials and Structures, 16(6), pp.417-428. Available at: https://doi.org/10.1080/15376490902781209.
He, C., Zhu, J., Hua, Y., Xin, D. & Hua, H. 2023. A study on the vibration characteristics of functionally graded cylindrical beam in a thermal environment using the Carrera unified formulation. Mechanics of Advanced Materials and Structures, pp.1-13. Available at: https://doi.org/10.1080/15376494.2023.2242861.
Javidi, R., Rezaei, B. & Moghimi Zand, M. 2023. Nonlinear Dynamics of a Beam Subjected to a Moving Mass and Resting on a Viscoelastic Foundation Using Optimal Homotopy Analysis Method. International Journal of Structural Stability and Dynamics, 23(08), art.number:2350084. Available at: https://doi.org/10.1142/S0219455423500840.
Khalili, S.M.R., Jafari, A.A. & Eftekhari, S.A. 2010. A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Composite Structures, 92(10), pp.2497-2511. Available at: https://doi.org/10.1016/j.compstruct.2010.02.012.
Le, T.H., Gan, B.S., Trinh, T.H. & Nguyen, D.K. 2014. Finite element analysis of multi-span functionally graded beams under a moving harmonic load. Mechanical Engineering Journal, 1(3), art.number:CM0013. Available at: https://doi.org/10.1299/mej.2014cm0013.
Li, Z., Xu, Y. & Huang, D. 2021. Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations. International Journal of Mechanical Sciences, 191, art.number:106084. Available at: https://doi.org/10.1016/j.ijmecsci.2020.106084.
Lin, S.-M. & Lee, K.-W. 2016. Instability and vibration of a vehicle moving on curved beams with different boundary conditions. Mechanics of Advanced Materials and Structures, 23(4), pp.375-384. Available at: https://doi.org/10.1080/15376494.2014.981618.
Malekzadeh, P. & Monajjemzadeh, S.M. 2016. Dynamic response of functionally graded beams in a thermal environment under a moving load. Mechanics of Advanced Materials and Structures, 23(3), pp.248-258. Available at: https://doi.org/10.1080/15376494.2014.949930.
Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. & Bedia, E.A.A. 2012. Analytical Solutions for Static Shear Correction Factor of Functionally Graded Rectangular Beams. Mechanics of Advanced Materials and Structures, 19(8), pp.641-652. Available at: https://doi.org/10.1080/15376494.2011.581409.
Nguyen, V.D. & Phung, V.B. 2023. Static bending, free vibration, and buckling analyses of two-layer FGM plates with shear connectors resting on elastic foundations. Alexandria Engineering Journal, 62, pp.369-390. Available at: https://doi.org/10.1016/j.aej.2022.07.038.
Phadikar, J.K. & Pradhan, S.C. 2010. Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Computational Materials Science, 49(3), pp.492-499. Available at: https://doi.org/10.1016/j.commatsci.2010.05.040.
Praveen, G.N. & Reddy, J.N. 1998. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 35(33), pp.4457-4476. Available at: https://doi.org/10.1016/S0020-7683(97)00253-9.
Reddy, J.N. 2007. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45(2-8), pp.288-307. Available at: https://doi.org/10.1016/j.ijengsci.2007.04.004.
Safaei, M., Malekzadeh, P. & Golbahar Haghighi, M.R. 2024. Out-of-plane moving load response and vibrational behavior of sandwich curved beams with GPLRC face sheets and porous core. Composite Structures, 327, art.number:117658. Available at: https://doi.org/10.1016/j.compstruct.2023.117658.
Saleh, B., Jiang, J., Fathi, R., Al-hababi, T., Xu, Q., Wang, L., Song, D. & Ma, A. 2020. 30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges. Composites Part B: Engineering, 201, art.number:108376. Available at: https://doi.org/10.1016/j.compositesb.2020.108376.
Şimşek, M. 2010. Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Composite Structures, 92(4), pp.904-917. Available at: https://doi.org/10.1016/j.compstruct.2009.09.030.
Şimşek, M. & Al-shujairi, M. 2017. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engineering, 108, pp.18-34. Available at: https://doi.org/10.1016/j.compositesb.2016.09.098.
Şimşek, M. & Kocatürk, T. 2009. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures, 90(4), pp.465-473. Available at: https://doi.org/10.1016/j.compstruct.2009.04.024.
Thai, H.-T. & Vo, T.P. 2012. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. International Journal of Mechanical Sciences, 62(1), pp.57-66. Available at: https://doi.org/10.1016/j.ijmecsci.2012.05.014.
Wang, X., Liang, X. & Jin, C. 2017. Accurate dynamic analysis of functionally graded beams under a moving point load. Mechanics Based Design of Structures and Machines, 45(1), pp.76-91. Available at: https://doi.org/10.1080/15397734.2016.1145060.
Xiang, S. & Kang, G.-W. 2013. A nth-order shear deformation theory for the bending analysis on the functionally graded plates. European Journal of Mechanics - A/Solids, 37(Jan-Feb), pp.336-343. Available at: https://doi.org/10.1016/J.EUROMECHSOL.2012.08.005.
Yan, T., Kitipornchai, S., Yang, J. & He, X.Q. 2011. Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Composite Structures, 93(11), pp.2992-3001. Available at: https://doi.org/10.1016/j.compstruct.2011.05.003.
Yan, T. & Yang, J. 2011. Forced Vibration of Edge-Cracked Functionally Graded Beams Due to a Transverse Moving Load. Procedia Engineering, 14, pp.3293-3300. Available at: https://doi.org/10.1016/j.proeng.2011.07.416.
Yang, J., Chen, Y., Xiang, Y. & Jia, X.L. 2008. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, 312(1-2), pp.166-181. Available at: https://doi.org/10.1016/j.jsv.2007.10.034.
Yang, Y.B., Yau, J.D. & Wu, Y.S. 2004. Vehicle–Bridge Interaction Dynamics: With Applications to High-Speed Railways. World Scientific. Available at: https://doi.org/10.1142/5541.
Zemri, A., Houari, M.S.A., Bousahla, A.A. & Tounsi, A. 2015. A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Structural Engineering and Mechanics, 54(4), pp.693-710. Available at: https://doi.org/10.12989/sem.2015.54.4.693.
Sva prava zadržana (c) 2024 Amine Zemri, Ismail Mechab
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).