Influence of sediment additions on the mechanical behavior of fiber-reinforced concrete in aggressive environments

  • Louafi Goudih Mustapha Stambouli University, Department of Civil Engineering, Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0004-2793-1654
  • Hamid Sellaf University of Saida, Department of Civil Engineering and Hydraulics, Saida, People's Democratic Republic of Algeria + Civil Engineering and Environmental Laboratory, Sidi Bel Abbes, People's Democratic Republic of Algeria https://orcid.org/0009-0006-3943-3024
  • Benamar Balegh University of Ahmed Draia Adrar, Department of Civil Engineering, Adrar, People's Democratic Republic of Algeria + Civil Engineering and Environmental Laboratory, Sidi Bel Abbes, People's Democratic Republic of Algeria https://orcid.org/0000-0002-8529-7063
  • Ali Meksi Mustapha Stambouli University, Department of Civil Engineering, Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0009-0320-3704
  • Adda Hadj Mostefa University of Relizane, Department of Civil Engineering and Public Works, Innovative Materials and Renewable Energies Laboratory, Relizane, People's Democratic Republic of Algeria https://orcid.org/0009-0004-0086-9280
  • Mohamed Elamine Dahamni University Oran 1 - Ahmed Ben Bella, Condensed Matter Science Laboratory (LSMC), Oran 1, People's Democratic Republic of Algeria https://orcid.org/0000-0001-5920-1198
Keywords: concrete (SCC), sediment, marble powder, fiber, mass loss, mechanical, aggressive environment

Abstract


Introduction/purpose: The use of supplementary cementitious materials (SCM) in construction has gained popularity due to their ability to improve  the mechanical properties and environmental sustainability of concrete. This study aimed to investigate the potential of utilizing waste materials, specifically marble powder (MP) and dam sediment (DS), as partial replacements for cement in self-compacting concrete (SCC). The primary objectives were to recycle these waste materials and assess the durability and strength of SCC exposed to aggressive chemical environments.

Methods: In this study, cement was partially replaced with 40% MP, 40% DS, and a combination of 20% MP and 20% DS. The performance of such concrete was evaluated through compressive strength tests conducted for 28 days. Durability was assessed by exposing the concrete to chemical attacks from hydrochloric acid (HCl), sulfuric acid (H₂SO₄), and sodium sulfate (Na₂SO₄) solutions. Mass loss due to these chemical attacks was also measured.

Results: The concrete incorporating MP demonstrated compressive strengths similar to that of the control concrete, achieving 37.61 MPa at 28 days. The concrete with DS exhibited lower strength (31.81 MPa) and showed higher resistance to HCl (ML = 38.78%) compared to the MP concrete (ML = 40.74%). Additionally, all concrete samples exhibited good resistance to sulfuric acid due to the formation of expansive ettringite which protected the concrete from further degradation.

Conclusions: The results indicated that both marble powder and dam sediment are viable supplementary materials for improving the mechanical properties and durability of SCC. The concrete with marble powder showed superior strength, while dam sediment contributed to enhanced acid resistance. The combination of these materials offers a sustainable solution for concrete exposed to aggressive environments.

References

-ACI Committee 237. 2007. 237R-07: Self-Consolidating Concrete. ACI American Concrete Institute, January 4 [online]. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/18605?gad_source=1&gclid=CjwKCAiA6aW6BhBqEiwA6KzDc9agd-Q_3KklxCQYzmj-fIVB06rtwGVxavJ-pElLHf1cHJYAaPr6tRoCdCAQAvD_BwE [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 1991. NF P94-054: Sols : reconnaissances et essais - Détermination de la masse volumique des particules solides des sols - Méthode du pycnomètre à eau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94054/sols-reconnaissance-et-essais-determination-de-la-masse-volumique-des-parti/fa020767/11077 [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 1992. NF P94-057: Sols : reconnaissance et essais - Analyse granulométrique des sols - Méthode par sédimentation [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94057/sols-reconnaissance-et-essais-analyse-granulometrique-des-sols-methode-par-/fa020768/11074 [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 1993. NF P94-051: Sols : reconnaissance et essais - Détermination des limites d'Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94051/sols-reconnaissance-et-essais-determination-des-limites-datterberg-limite-d/fa020765/11080 [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 1996. NF P94-056: Sols : reconnaissance et essais - Analyse granulométrique - Méthode par tamisage à sec après lavage [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94056/sols-reconnaissance-et-essais-analyse-granulometrique-methode-par-tamisage-/fa026936/11075 [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 1998a. NF EN 1744-1: Essais pour déterminer les propriétés chimiques des granulats - Partie 1 : analyse chimique [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-17441/essais-pour-determiner-les-proprietes-chimiques-des-granulats-partie-1-anal/fa039721/62422 [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 1998b. NF P94-068: Sols : reconnaissance et essais - Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériau rocheux - Détermination de la valeur de bleu de méthylène d'un sol ou d'un matériau rocheux par l'essai à la tache [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94068/sols-reconnaissance-et-essais-mesure-de-la-capacite-dadsorption-de-bleu-de-/fa043689/394 [Accessed: 29 March 2024].

-AFNOR Association française de normalisation. 2004. NF EN 206-1: Concrete - Part 1 : specification, performance, production and conformity [online]. Available at: https://www.boutique.afnor.org/en-gb/standard/nf-en-2061/concrete-part-1-specification-performance-production-and-conformity/fa125184/22922 [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 2010a. NF EN 12350-10: Essai pour béton frais - Partie 10 : béton auto-plaçant - Essai à la boîte en L [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-1235010/essai-pour-beton-frais-partie-10-beton-autoplacant-essai-a-la-boite-en-l/fa165666/36401 [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 2010b. NF EN 12350-11: Essai pour béton frais - Partie 11 : béton auto-plaçant - Essai de stabilité au tamis [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-1235011/essai-pour-beton-frais-partie-11-beton-autoplacant-essai-de-stabilite-au-ta/fa165665/36326 [Accessed: 12 April 2024].

-AFNOR Association française de normalisation. 2019. NF EN 12350-2: Essais pour béton frais - Partie 2 : essai d'affaissement [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-123502/essais-pour-beton-frais-partie-2-essai-daffaissement/fa190558/83431 [Accessed: 12 April 2024].

Bassuoni, M.T. & Nehdi, M.L. 2007. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cement and Concrete Research, 37(7), pp.1070-1084. Available at: https://doi.org/10.1016/j.cemconres.2007.04.014.

Bonavetti, V.L., Rahhal, V.F. & Irassar, E.F. 2001. Studies on the carboaluminate formation in limestone filler-blended cements. Cement and Concrete Research, 31(6), pp.853-859. Available at: https://doi.org/10.1016/S0008-8846(01)00491-4.

Denis, P.E. 2008. Optimisation du béton autoplaçant : mise en place en laboratoire et sur chantier. Master’s Final Project. Leeds: École des Mines de Saint-Étienne.

Diederich, P., Mouret, M. & Ponchon, F. 2013. Simple tools for achieving self-compacting ability of concrete according to the nature of the limestone filler. Construction and Building Materials, 48, pp.840-852. Available at: https://doi.org/10.1016/j.conbuildmat.2013.07.071.

Hammadi, L., Ponton, A. & Belhadri, M. 2011. Rheological study and valorization of waste sludge from wastewater treatment plants in the dredging operation of hydraulic dams. Energy Procedia, 6, pp.302-309. Available at: https://doi.org/10.1016/j.egypro.2011.05.034.

Labiod-Aloui, Z., Trouzine, H., Ghembaza, M.S., Nouioua, T. & Sebaibi, Y. 2014. Experimental investigation of mixtures of bentonite and dredged sediments from Chorfa dam in Algeria. Turkish Journal of Earth Sciences, 23(3), pp.330-338. Available at: https://doi.org/10.3906/yer-1302-13.

Muhedin, D.A. & Ibrahim, R.K. 2023. Effect of waste glass powder as partial replacement of cement & sand in concrete. Case Studies in Construction Materials, 19, e02512. Available at: https://doi.org/10.1016/j.cscm.2023.e02512.

Pająk, M. & Ponikiewski, T. 2013. Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Construction and Building Materials, 47, pp.397-408. Available at: https://doi.org/10.1016/j.conbuildmat.2013.05.072.

Ranatunga, K.S., del Rey Castillo, E. & Toma, C.L. 2023. Evaluation of the optimal concrete mix design with coconut shell ash as a partial cement replacement. Construction and Building Materials, 401, art.number:132978. Available at: https://doi.org/10.1016/j.conbuildmat.2023.132978.

Scherer, C., de Lima, L.F. & Zorzi, J.E. 2023. Effect of partial replacement of cement by fine powders on the corrosion resistance of concrete. Construction and Building Materials, 401, art.number:132982. Available at: https://doi.org/10.1016/j.conbuildmat.2023.132982.

Sellaf, H. & Balegh, B. 2023. Effect Of Waste Marble Powder On The Properties Of White Mortar Made From Tuff. Journal of New Technology and Materials, 13(1), pp.25-32 [online]. Available at: https://www.asjp.cerist.dz/index.php/en/article/227651 [Accessed: 17 October 2024].

Sellaf, H., Balegh, B. & Bkhiti, M. 2023. The Assessment and Treatment of Dredged Sediments and Limestone Tuff Using Waste Ceramic with Low-Cement. Advanced Engineering Forum, 48, pp.45-58. Available at: https://doi.org/10.4028/p-2j4d93.

Thunuguntla, C.S. & Gunneswara Rao, T.D. 2018. Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Construction and Building Materials, 193, pp.173-188. Available at: https://doi.org/10.1016/j.conbuildmat.2018.10.189.

Published
2025/02/01
Section
Original Scientific Papers