Analitičko ispitivanje poroznih laminiranih ploča od funkcionalno gradiranih kompozita ojačanih ugljeničnim nanocevima (FG-CNTRC) na izvijanje i slobodne vibracije

  • Tahir Ghazoul Univerzitet Đilali Liabes, Laboratorija za napredne konstrukcije i materijale u građevinarstvu i javnim radovima, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0006-9869-4339
  • Mohamed Atif Benatta Univerzitet Đilali Liabes, Laboratorija za napredne konstrukcije i materijale u građevinarstvu i javnim radovima, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0007-5854-9054
  • Abdelwahhab Khatir Politehnički univerzitet Marke, Strukturni odsek DICEA, Ankona, Republika Italija https://orcid.org/0000-0003-4920-5165
  • Youcef Beldjelili Univerzitet Đilali Liabes, Laboratorija za napredne konstrukcije i materijale u građevinarstvu i javnim radovima, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0003-3877-9665
  • Baghdad Krour Univerzitet Đilali Liabes, Laboratorija za napredne konstrukcije i materijale u građevinarstvu i javnim radovima, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8265-9807
  • Mohamed Bachir Bouiadjra Univerzitet Đilali Liabes, Laboratorija za napredne konstrukcije i materijale u građevinarstvu i javnim radovima, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0008-4814-6187
Ključne reči: izvijanje, slobodna vibracija, laminirana kompozitna ploča, poroznost, funkcionalno gradiran materijal, ugljenične nanocevi

Sažetak


Uvod/cilj: Cilj ove studije jeste da ispita ponašanje laminiranih kompozitnih ploča ojačanih ugljeničnim nanocevima pri izvijanju i  slobodnim vibracijama kada se uzimaju u obzir različiti izvori nesigurnosti i kada je fokus na postojanju poroznosti.

Metode: Model porozne laminirane ploče razvijen je pomoću smicajne deformacione teorije višeg reda. Ispitane su različite konfiguracije funkcionalno gradiranih ugljeničnih nanocevi s jednostrukim zidom, poređanih celom debljinom svakog sloja. Efektivna svojstva materijala procenjena su kroz prošireno pravilo o smešama, uzimajući u obzir gornju granicu efekta poroznosti. Vodeće jednačine izvedene su i rešene pomoću principa virtualnog rada i Navijerovog pristupa. Validnost navedene formulacije potvrđena je poređenjem dobijenih rezultata sa podacima iz postojeće literature. Detaljno je ispitan uticaj brojnih parametara poput poroznosti, zapreminskog udela ugljeničnih nanocevi, tipova distribucije ojačanja, šeme laminacije, kao i broja slojeva na izvijanje i odgovora na slobodne vibracije. 

Rezultati: Ključni nalaz ove studije jeste da je znatno smanjena otpornost na izvijanje laminiranih FG-CNTRC ploča usled poroznosti, za razliku od minornog uticaja na odgovor na slobodne vibracije.

Zaključak: Rezultati ovog rada ističu kritičnu ulogu poroznosti u integritetu strukture i pružaju nove uvide u ponašanje naprednih kompozitnih materijala.

Reference

Alimoradzadeh, M., Heidari, H., Tornabene, F. & Dimitri, R. 2023. Thermo-Mechanical Buckling and Non-Linear Free Oscillation of Functionally Graded Fiber-Reinforced Composite Laminated (FG-FRCL) Beams. Applied Sciences, 13(8), art.number:4904. Available at: https://doi.org/10.3390/app13084904.

Arani, A.G., Kiani, F. & Afshari, H. 2021. Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels. Journal of Sandwich Structures & Materials, 23(1), pp.255-278. Available at: https://doi.org/10.1177/1099636219830787.

Chiker, Y., Bachene, M., Attaf, B., Hafaifa, A. & Guemana, M. 2023. Uncertainty influence of nanofiller dispersibilities on the free vibration behavior of multi-layered functionally graded carbon nanotube-reinforced composite laminated plates. Acta Mechanica, 234(4), pp.1687-1711. Available at: https://doi.org/10.1007/s00707-022-03438-6.

Ciriscioli, P.R., Springer, G.S. & Lee, W.I. 1991. An Expert System for Autoclave Curing of Composites. Journal of Composite Materials, 25(12), pp.1542-1587. Available at: https://doi.org/10.1177/002199839102501201.

Daikh, A.A., Belarbi, M.-O., Salami, S.J., Ladmek, M., Belkacem, A., Houari, M.S.A., Ahmed, H.M. & Eltaher, M.A. 2023. A three-unknown refined shear beam model for the bending of randomly oriented FG-CNT/fiber-reinforced composite laminated beams rested on a new variable elastic foundation. Acta Mechanica, 234(10), pp.5171-5186. Available at: https://doi.org/10.1007/s00707-023-03657-5.

Fu, T., Chen, Z., Yu, H., Wang, Z. & Liu, X. 2019. Mechanical behavior of laminated functionally graded carbon nanotube reinforced composite plates resting on elastic foundations in thermal environments. Journal of Composite Materials, 53(9), pp.1159-1179. Available at: https://doi.org/10.1177/0021998318796170.

Guessas, H., Zidour, M., Meradjah, M. & Tounsi, A. 2018. The critical buckling load of reinforced nanocomposite porous plates. Structural Engineering and Mechanics, 67(2), pp.115-123. Available at: https://doi.org/10.12989/sem.2018.67.2.115.

Hagstrand, P.-O., Bonjour, F. & Månson, J.-A.E. 2005. The influence of void content on the structural flexural performance of unidirectional glass fibre reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 36(5), pp.705-714. Available at: https://doi.org/10.1016/j.compositesa.2004.03.007.

Hayashi, T. & Takahashi, J. 2017. Influence of void content on the flexural fracture behaviour of carbon fiber reinforced polypropylene. Journal of Composite Materials, 51(29), pp.4067-4078. Available at: https://doi.org/10.1177/0021998317698215.

Hernández, S., Sket, F., Molina-Aldareguı´a, J.M., González, C. & LLorca, J. 2011. Effect of curing cycle on void distribution and interlaminar shear strength in polymer-matrix composites. Composites Science and Technology, 71(10), pp.1331-1341. Available at: https://doi.org/10.1177/0021998317698215.

Huang, B., Guo, Y., Wang, J., Du, J., Qian, Z., Ma, T. & Yi, L. 2017. Bending and free vibration analyses of antisymmetrically laminated carbon nanotube-reinforced functionally graded plates. Journal of Composite Materials, 51(22), pp.3111-3125. Available at: https://doi.org/10.1177/0021998316685165.

Kirchhoff, G. 1850. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik (Crelles Journal), 1850(40), pp.51-88. Available at: https://doi.org/10.1515/crll.1850.40.51.

Kwon, H., Bradbury, C.R. & Leparoux, M. 2011. Fabrication of Functionally Graded Carbon Nanotube-Reinforced Aluminum Matrix Composite. Advanced Engineering Materials, 13(4), pp.325-329. Available at: https://doi.org/10.1002/adem.201000251.

Lee, J., Kim, J. & Hyeon, T. 2006. Recent Progress in the Synthesis of Porous Carbon Materials. Advanced Materials, 18(16), pp.2073-2094. Available at: https://doi.org/10.1002/adma.200501576.

Lei, Z.X., Liew, K.M. & Yu, J.L. 2013. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Composite Structures, 98, pp.160-168. Available at: https://doi.org/10.1016/j.compstruct.2012.11.006.

Lei, Z.X., Zhang, L.W. & Liew, K.M. 2018. Modeling large amplitude vibration of matrix cracked hybrid laminated plates containing CNTR-FG layers. Applied Mathematical Modelling, 55, pp.33-48. Available at: https://doi.org/10.1016/j.apm.2017.10.032.

Liew, K.M., Lei, Z.X. & Zhang, L.W. 2015. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Composite Structures, 120, pp.90-97. Available at: https://doi.org/10.1016/j.compstruct.2014.09.041.

Ma, R. & Jin, Q. 2023. Free Vibration Analysis of Functionally Graded Graphene-Reinforced Composite-Laminated Plates. Journal of Aerospace Engineering, 36(3), art.ID:04023016. Available at: https://doi.org/10.1061/JAEEEZ.ASENG-4657.

Madsen, B. & Lilholt, H. 2003. Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Eco-Composites, 63(9), pp.1265-1272. Available at: https://doi.org/10.1016/S0266-3538(03)00097-6.

Madsen, B., Thygesen, A. & Lilholt, H. 2009. Plant fibre composites – porosity and stiffness. Composites Science and Technology, 69(7), pp.1057-1069. Available at: https://doi.org/10.1016/j.compscitech.2009.01.016.

Malekzadeh, P. & Shojaee, M. 2013. Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin-Walled Structures, 71, pp.108-118. Available at: https://doi.org/10.1016/j.tws.2013.05.008.

Mantari, J.L., Oktem, A.S. & Guedes Soares, C. 2012. A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. International Journal of Solids and Structures, 49(1), pp.43-53. Available at: https://doi.org/10.1016/j.ijsolstr.2011.09.008.

Medani, M., Benahmed, A., Zidour, M., Heireche, H. & Tounsi, A. 2019. Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel and Composite Structures, 32(5), pp.595-610. Available at: https://doi.org/10.12989/scs.2019.32.5.595.

Mehdikhani, M., Gorbatikh, L., Verpoest, I. & Lomov, S.V. 2019. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials, 53(12), pp.1579-1669. Available at: https://doi.org/10.1177/0021998318772152.

Mindlin, R.D. 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 18(1), pp.31-38. Available at: https://doi.org/10.1115/1.4010217.

Phani, K.K. & Niyogi, S.K. 1987. Young’s modulus of porous brittle solids. Journal of Materials Science, 22(1), pp.257-263. Available at: https://doi.org/10.1007/BF01160581.

Reddy, J.N. 1984. A Simple Higher-Order Theory for Laminated Composite Plates. Journal of Applied Mechanics, 51(4), pp.745-752. Available at: https://doi.org/10.1115/1.3167719.

Sayyad, A.S. & Ghugal, Y.M. 2015. On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results. Composite Structures, 129, pp.177-201. Available at: https://doi.org/10.1016/j.compstruct.2015.04.007.

Shen, H.S. 2009. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, 91(1), pp.9-19. Available at: https://doi.org/10.1016/j.compstruct.2009.04.026.

Shimpi, R.P., Arya, H. & Naik, N.K. 2003. A Higher Order Displacement Model for the Plate Analysis. Journal of Reinforced Plastics and Composites, 22(18), pp.1667-1688. Available at: https://doi.org/10.1177/073168403027618.

Stamopoulos, A.G., Tserpes, K.I., Průcha, P. & Vavřík, D. 2016. Evaluation of porosity effects on the mechanical properties of carbon fiber-reinforced plastic unidirectional laminates by X-ray computed tomography and mechanical testing. Journal of Composite Materials, 50, pp.2087-2098. Available at: https://doi.org/10.1077/0021998315602049.

Thai, H.-T. & Choi, D.-H. 2011. A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology, 71(16), pp.1850-1858. Available at: https://doi.org/10.1016/j.compscitech.2011.08.016.

Thai, H.-T. & Vo, T.P. 2013. A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Applied Mathematical Modelling, 37(5), pp.3269–3281. Available at: https://doi.org/10.1016/j.apm.2012.08.008.

Tran, H.Q., Vu, V.T., Tran, M.T. & Nguyen-Tri, P. 2020. A new four-variable refined plate theory for static analysis of smart laminated functionally graded carbon nanotube reinforced composite plates. Mechanics of Materials, 142, art.number:103294. Available at: https://doi.org/10.1016/j.mechmat.2019.103294.

Wattanasakulpong, N. & Chaikittiratana, A. 2015. Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Applied Mathematical Modelling, 39(18), pp.5459-5472. Available at: https://doi.org/10.1016/j.apm.2014.12.058.

Zhang, L.W. & Selim, B.A. 2017. Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy’s higher-order shear deformation theory. Composite Structures, 160, pp.689-705. Available at: https://doi.org/10.1016/j.compstruct.2016.10.102.

Zhu, P., Lei, Z.X. & Liew, K.M. 2012. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures, 94(4), pp.1450-1460. Available at: https://doi.org/10.1016/j.compstruct.2011.11.010.

Objavljeno
2024/09/28
Rubrika
Originalni naučni radovi