Primena višekriterijumskog odlučivanja za izbor lokacije za savlađavanje vodene prepreke gazom u odbrambenoj operaciji
Sažetak
Uvod/cilj: U radu je prikazan višekriterijumski model Fuzzy DIBR-Fuzzy DIBR II-EWAA-BM-DEXi-Fuzzy LMAW pomoću kojeg se vrši izbor lokacije za savlađivanje vodenih prepreka gazom u odbrambenoj operaciji. Nakon identifikacije kriterijuma od strane eksperata, primenjen je navedeni model i određena je optimalna lokacija. Radi testiranja konzistentnosti rezultata i validnosti modela, ponovo su angažovani eksperti, izvršena je analiza osetljivosti i komparativna analiza.
Metode: Metode Fuzzy DIBR i Fuzzy DIBR II korišćene su za određivanje težinskih koeficijenata identifikovanih kriterijuma, dok je agregacija ekspertskih mišljenja i dobijenih vrednosti vršena pomoću EWAA i BM operatora. Za izbor optimalne lokacije primenjena je metoda Fuzzy LMAW, dok su lingvistički deskriptori određivani pomoću DEXi sistema za podršku odlučivanju.
Rezultati: Predložena metodologija omogućila je identifikaciju svih kriterijuma koji uslovljavaju izbor lokacije i sam izbor optimalne lokacije za prelazak gazom preko vodene prepreke u odbrambenoj operaciji. Testiranjem medela , analizom osetljivosti izlaznih rezultata na promene težina kriterijuma i poređenjem dobijenih rezultata sa rezultatima drugih metoda, ukazano je na činjenicu da je model validan i da daje konzistentne rezultate.
Zaključak: Zaključeno je da višekriterijumski model pruža neophodnu pomoć donosiocima odluka u uslovima nepreciznih i neodređenih informacija i da je primenjiv u realnim situacijama. Takođe, predloženi model razmatra sve aspekte koje je neophodno sagledati prilikom donošenja jedne kompletne odluke i pomaže manje iskusnim starešinama u procesu odlučivanja, smanjujući mogućnost nastanka grešaka, koje za posledicu mogu imati i ljudske žrtve. Na kraju, predloženi su pravci daljih istraživanja iz oblasti savlađivanja vodenih prepreka i višekriterijumskog odlučivanja.
Reference
Aldaghi, T. & Muzik, J. 2024. Multicriteria Decision-Making in Diabetes Management and Decision Support: Systematic Review. JMIR medical informatics, 12, e47701. Available at: https://doi.org/10.2196/47701.
Alwedyan, S. 2024. Optimal location selection of a casual-dining restaurant using a multi-criteria decision-making (MCDM) approach. International review for spatial planning and sustainable development, 12(1), pp.156-172. Available at: https://doi.org/10.14246/irspsd.12.1_156.
Ao Xuan, H., Vu Trinh, V., Techato, K. & Phoungthong, K. 2022. Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan. Sustainable Energy Technologies and Assessments, 52(A), art.number:101979. Available at: https://doi.org/10.1016/j.seta.2022.101979.
Aykac, Y.E., Yucesan, M. & Gul, M. 2023. Development of a Best-Worst Method based MCDM approach for solar power plant location selection: An Application to Tunceli, Turkey. International Journal of Multicriteria Decision Making (IJMCDM), 9(4), pp.322-350. Available at: https://doi.org/10.1504/ijmcdm.2023.10056276.
Bazić, M. & Danilović, N. 2015. Draft scientific concept of the research project. Megatrend revija/Megatrend Review, 12(3), pp.5-28 (in Serbian). Available at: https://doi.org/10.5937/MegRev1503005B.
Bilgin, N.G., Bozma, G. & Riaz, M. 2024. Location selection criteria for a military base in border region using N-AHP method. AIMS Mathematics, 9(3), pp.7529-7551. Available at: https://doi.org/10.3934/math.2024365.
Bohanec, M. 2023. DEXi: A Program for Multi-Attribute Decision Making Version 5.0. In: Jožef Stefan Institute (Ljubljana, Slovenia), June 6 [online]. Available at: https://kt.ijs.si/MarkoBohanec/dexi.html [Accessed: 18 April 2024].
Bohanec, M., Žnidaršič, M., Rajkovič, V., Bratko, I., & Zupan, B. 2013. DEX Methodology: Three Decades of Qualitative Multi-Attribute Modeling. Informatica, 37(1), pp.49-54 [online]. Available at: https://www.informatica.si/index.php/informatica/article/view/433/437 [Accessed: 20 April 2024].
Bonferroni, C. 1950. Sulle medie multiple di potenze. Bollettino Della Unione Matematica Italiana, 5(3-4), pp.267-270 [online]. Available at: https://www.bdim.eu/item?id=BUMI_1950_3_5_3-4_267_0&fmt=pdf (in Italian) [Accessed: 18 April 2024].
Bozanić, D., Tešić, D. & Milićević, J. 2018. A hybrid Fuzzy AHP-MABAC model: Application in the Serbian Army – The selection of the location for deep wading as a technique of crossing the river by tanks. Decision Making: Applications in Management and Engineering, 1(1), pp.143-164. Available at: https://doi.org/10.31181/dmame1801143b.
Božanić, D. & Pamucar, D. 2023. Overview of the Method Defining Interrelationships Between Ranked Criteria II and Its Application in Multi-criteria Decision-Making. In: Chatterjee, P., Pamucar, D., Yazdani, M. & Panchal, D. (Eds.) Computational Intelligence for Engineering and Management Applications. Lecture Notes in Electrical Engineering, 984, pp.863-873. Singapore: Springer. Available at: https://doi.org/10.1007/978-981-19-8493-8_64.
Chang, T.-H. 2014. Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan. Information Sciences, 271, pp.196-212. Available at: https://doi.org/10.1016/j.ins.2014.02.118.
Dağıstanlı, H.A. & Kurtay, K.G. 2024. Facility Location Selection for Ammunition Depots based on GIS and Pythagorean Fuzzy WASPAS. Journal of Operations Intelligence, 2(1), pp.36-49. Available at: https://doi.org/10.31181/jopi2120247.
de Araújo Costa, I.P.de Araújo Costa, A.P., Sanseverino, A.M., Gomes, C.F.S. & dos Santos, M. 2022. Bibliometric studies on multi-criteria decision analysis (MCDA) methods applied in military problems. Pesquisa Operacional, 42, e249414, pp.1-26 Available at: https://doi.org/10.1590/0101-7438.2022.042.00249414.
De, S.K. & Nandi, S. 2024. The exact defuzzification method under polynomial approximation of various fuzzy sets. Yugoslav Journal of Operations Research, 34(1), pp.51-72. Available at: https://doi.org/10.2298/yjor2306017d.
Falkowski, M. & Model, A. 2019. Procedures of crossing water obstacles in the light of binding normative documents. Scientific Journal of the Military University of Land Forces, 193(3), pp.443-458. Available at: https://doi.org/10.5604/01.3001.0013.5001.
Fernández-Portillo, L.A., Yazdani, M., Estepa-Mohedano, L. & Sisto, R. 2023. Prioritisation of strategies for the adoption of organic agriculture using BWM and fuzzy CoCoSo. Soft Computing, 2023, pp.1-32. Available at: https://doi.org/10.1007/s00500-023-09431-y.
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E.K., Turskis, Z. & Antuchevičienė, J. 2022. MCDM approaches for evaluating urban and public transportation systems: A short review of recent studies. Transport, 37(6), pp.411-425. Available at: https://doi.org/10.3846/transport.2022.18376.
Kumar, V., Vrat, P.& Shankar, R. 2024. MCDM model to rank the performance outcomes in the implementation of Industry 4.0. Benchmarking: An International Journal, 31(5), pp.1453-1491. Available at: https://doi.org/10.1108/BIJ-04-2022-0273.
Kurnaz, S., Özdağoğlu, A. & Keleş, M.K. 2023. Method of evaluation of military helicopter pilot selection criteria: A novel Grey SWARA approach. Aviation, 27(1), pp.27-35. Available at: https://doi.org/10.3846/aviation.2023.18596.
Maghfiroh, M. & Kavirathna, C. 2023. Location Selection of Battery Swap Station using Fuzzy MCDM Method: A Case Study in Indonesia. Jurnal teknik industri, 24(2), pp.81-94. Available at: https://doi.org/10.22219/jtiumm.vol24.no2.81-94.
Mishra, A.R., Rani, P., Cavallaro, F. & Alrasheedi, A.F. 2023. Assessment of sustainable wastewater treatment technologies using interval-valued intuitionistic fuzzy distance measure-based MAIRCA method. Facta Universitatis, Series: Mechanical Engineering, 21(3), pp.359-386. Available at: https://doi.org/10.22190/FUME230901034M.
Nghiem, T.B.H. & Chu, T.-C. 2024. A total distance ranking approach to fuzzy AHP-based MCDM method for selecting sustainable manufacturing facility location. Journal of Intelligent & Fuzzy Systems, 46(2), pp.3085-3115. Available at: https://doi.org/10.3233/jifs-223962.
Pamucar, D., Deveci, M., Gokasar, I., Işık, M. & Zizovic, M. 2021a. Circular economy concepts in urban mobility alternatives using integrated DIBR method and fuzzy Dombi CoCoSo model. Journal of Cleaner Production, 323, at.number:129096. Available at: https://doi.org/10.1016/j.jclepro.2021.129096.
Pamucar, D., Simic, V., Lazarević, D., Dobrodolac, M. & Deveci, M. 2022. Prioritization of sustainable mobility sharing systems using integrated fuzzy DIBR and fuzzy-rough EDAS model. Sustainable Cities and Society, 82, art.number:103910. Available at: https://doi.org/10.1016/j.scs.2022.103910.
Pamučar, D., Žižović, M., Biswas, S. & Božanić, D. 2021b. A new logarithm methodology of additive weights (LMAW) for multi-criteria decision-making: application in logistics. Facta Universitatis, Series: Mechanical Engineering, 19(3), p.361. Available at: https://doi.org/10.22190/fume210214031p.
Pathinathan, T., Ponnivalavan, K. & Dison, M.E. 2015. Different Types of Fuzzy Numbers and Certain Properties. Journal of Computer and Mathematical Sciences, 6(11), pp.631-651 [online]. Available at: https://www.researchgate.net/publication/344877599 [Accessed: 18 April 2024].
Pifat, V. 1980. Prelaz preko reka. Belgrade, Serbia: Vojnoizdavački zavod (in Serbian).
Raad, N.G. & Rajendran, S. 2024. A hybrid robust SBM-DEA, multiple regression, and MCDM-GIS model for airport site selection: Case study of Sistan and Baluchestan Province, Iran. Transportation Engineering, 16, art.number:100235. Available at: https://doi.org/10.1016/j.treng.2024.100235.
Radovanović, M., Petrovski, A., Cirkin, E., Behlić, A., Jokić, Ž., Chemezov, D., Hashimov, E.G., Bouraima, M.B. & Jana, C. 2024. Application of the new hybrid model LMAW-G-EDAS multi-criteria decision-making when choosing an assault rifle for the needs of the army. Journal of Decision Analytics and Intelligent Computing, 4(1), pp.16-31. Available at: https://doi.org/10.31181/jdaic10021012024r.
Rashid, M.R., Ghosh, S.K., Alam, Md.F.B. & Rahman, M.F. 2023. A fuzzy multi-criteria model with Pareto analysis for prioritizing sustainable supply chain barriers in the textile industry: Evidence from an emerging economy. Sustainable Operations and Computers, 5, pp.29-40. Available at: https://doi.org/10.1016/j.susoc.2023.11.002.
Rodgers, J.L. & Nicewander, W.A. 1988. Thirteen Ways to Look at the Correlation Coefficient. The American Statistician, 42(1), pp.59-66. Available at: https://doi.org/10.2307/2685263.
Roszkowska, E. & Kacprzak, D. 2016. The fuzzy saw and fuzzy TOPSIS procedures based on ordered fuzzy numbers. Information Sciences, 369, pp.564-584. Available at: https://doi.org/10.1016/j.ins.2016.07.044.
Sahoo, S.K. & Goswami, S.S. 2024. Green Supplier Selection using MCDM: A Comprehensive Review of Recent Studies. Spectrum of Engineering and Management Sciences, 2(1), pp.1-16. Available at: https://doi.org/10.31181/sems1120241a.
Sánchez-Lozano, J.M. & Rodríguez, O.N. 2020. Application of Fuzzy Reference Ideal Method (FRIM) to the military advanced training aircraft selection. Applied Soft Computing, 88, art.number:106061. Available at: https://doi.org/10.1016/j.asoc.2020.106061.
Setiadji, A., Sukandari, B., Widjayanto, J. & Najib, R. 2020. Decision selection model of landing beach in amphibious operations excercise with Fuzzy MCDM. ASRO Journal - STTAL, 11(2), p.22-34. Available at: https://doi.org/10.37875/asro.v11i2.266.
Swethaa, S. & Felix, A. 2023. An intuitionistic dense fuzzy AHP- TOPSIS method for military robot selection. Journal of Intelligent & Fuzzy Systems, 44(4), pp.6749-6774. Available at: https://doi.org/10.3233/jifs-223622.
Tešić, D. & Božanić, D. 2023. Optimizing Military Decision-Making: Application of the FUCOM– EWAA–COPRAS-G MCDM Model. Acadlore transactions on applied mathematics and statistics, 1(3), pp.148-160. Available at: https://doi.org/10.56578/atams010303.
Tešić, D., Božanić, D. & Khalilzadeh, M. 2024. Enhancing Multi-Criteria Decision-Making with Fuzzy Logic: An Advanced Defining Interrelationships Between Ranked II Method Incorporating Triangular Fuzzy Numbers. Journal of intelligent management decision, 3(1), pp.56-67. Available at: https://doi.org/10.56578/jimd030105.
Tešić, D., Božanić, D., Puška, A., Milić, A. & Marinković, D. 2023. Development of the MCDM fuzzy LMAW-grey MARCOS model for selection of a dump truck. Reports in Mechanical Engineering, 4(1), pp.1-17 [online]. Available at: http://rme-journal.org/index.php/asd/article/view/95 [Accessed: 18 April 2024].
Tešić, D.Z. & Božanić, D.I. 2018. Application of the MAIRCA method in the selection of the location for crossing tanks under water. Tehnika, 73(6), pp.860-867 (in Serbian). Available at: https://doi.org/10.5937/tehnika1806860t.
Tešić, D.Z. & Božanić, D.I. 2024. Model for determining competences of experts in the field of Military Science. Vojno delo, 76(1), pp.1-22. Available at: https://doi.org/10.5937/vojdelo2401001T.
Turskis, Z., Zavadskas, E.K., Antuchevičienė, J. & Kosareva, N. 2015. A Hybrid Model Based on Fuzzy AHP and Fuzzy WASPAS for Construction Site Selection. International Journal of Computers Communications & Control, 10(6), pp.113-128 [online]. Available at: https://www.univagora.ro/jour/index.php/ijccc/article/view/2078 [Accessed: 18 April 2024].
Ulutaş, A. & Karakuş, C.B. 2021. Location selection for a textile manufacturing facility with GIS based on hybrid MCDM approach. Industria Textila, 72(2), pp.126-132. Available at: https://doi.org/10.35530/it.072.02.1736.
Wang, S., Yu, L., Cao, P., Hu, H., Pang, B., Luo, W. & Ge, X. 2024. A Scheme for Charging Load Prediction of EV Based on Fuzzy Theory [e-book]. In: IOS Press Ebooks. Series: Frontiers in Artificial Intelligence and Applications, 381: Electronics, Communications and Networks, pp.425-432. Available at: https://doi.org/10.3233/faia231222.
Yücenur, G.N. & Maden, A. 2024. Sequential MCDM methods for site selection of hydroponic geothermal greenhouse: ENTROPY and ARAS. Renewable Energy, 226, art.number:120361. Available at: https://doi.org/10.1016/j.renene.2024.120361.
Zadeh, L.A. 1965. Fuzzy sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/s0019-9958(65)90241-x.
Zadeh, L.A. 1973. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(1), pp.28-44. Available at: https://doi.org/10.1109/tsmc.1973.5408575.
Zarbakhshnia, N., Soleimani, H., & Ghaderi, H. 2018. Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria. Applied Soft Computing, 65, pp.307-319. Available at: https://doi.org/10.1016/j.asoc.2018.01.023.
Žnidaršič, V., Dojić, K.V. & Milić, L.N. 2024. Selection of Landing Site for Infantry River Crossing Using Aluminum Boat M70: Application of DIBR and Topsis Method. In: The 30th International Scientific Conference: The KNOWLEDGE-BASED ORGANIZATION, Sibiu, Romania, 30(1), pp.1-8, June 13-15. Available at: https://doi.org/10.2478/kbo-2024-0027.
Sva prava zadržana (c) 2024 Duško Z. Tešić, Darko I. Božanić, Adis Puška
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).