Primena računarskog vida pomoću OpenCV i dubokog učenja za određivanje induktivnosti u pljosnatim namotajima

  • Younes Benazzouz Univerzitet Oran 2 Mohamed Ben Ahmed, Institut za industrijsko održavanje i bezbednost (IMSI), Odeljenje za održavanje instrumentacije, Laboratorija za proizvodno mašinstvo i industrijsko održavanje (LGPMI), Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-8736-7610
  • Djilalia Guendouz Univerzitet Oran 2 Mohamed Ben Ahmed, Institut za industrijsko održavanje i bezbednost (IMSI), Odeljenje za održavanje instrumentacije, Laboratorija za proizvodno mašinstvo i industrijsko održavanje (LGPMI), Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0006-7129-5960
Ključne reči: konvolucione neuronske mreže (CNN), OpenCV, pljosnati namotaj, induktivnost, YOLOv9, obrada slika

Sažetak


Uvod/cilj: U oblasti razvoja i primene metodologija računarskog vida i veštačke inteligencije, ovo istraživanje predstavlja kombinaciju i naprednu metodu koja koristi YOLOv9 – koncept dubokog učenja za obradu celokupne slike u jednom prolazu kroz konvolucionu neuronsku mrežu (CNN) i biblioteku za obradu slika OpenCV na Pythonu za određivanje geometrije pljosnatih namotaja. Ovi osnovni geometrijski parametri koriste se za izračunavanje vrednosti induktivnosti pomoću Mohanove formule, koja isključivo upotrebljava geometrijske podatke za procenu vrednosti induktivnosti. Ova metoda znatno ubrzava procese verifikacije i izračunavanja, a poboljšava i kontrolu kvaliteta posle proizvodnje.

Metode: Metodologija je podeljena na dve glavne faze. U početku je model YOLOv9 bio konstruisan za prepoznavanje objekata korišćenjem generisanog sintetičkog skupa podataka oblika namotaja stvorenog pomoću Pythonove biblioteke Turtle Graphics. Zatim, nakon faze detekcije, OpenCV je korišćen za identifikaciju geometrijskih parametara slika. Pikseli su pretvoreni u milimetre primenommetode proporcija za tačno izračunavanje vrednosti induktivnosti.

Rezultati: Model YOLOv9 je uspešno identifikovao različite oblike pljosnatih namotaja, a geometrijski parametri su identifikovani putem OpenCV. Nakon toga, induktivnost je uspešno izračunata.

Zaključak: Rezultati pokazuju da je predložena metoda nov i efikasan način za izračunavanje induktivnosti.

Reference

Abu Alhaija, H., Mustikovela, S.K., Geiger, A. & Rother, C. 2019. Geometric image synthesis. In: Jawahar, C., Li, H., Mori, G. & Schindler, K. (Eds.) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, 11366, pp.85-100. Cham: Springer. Available at: https://doi.org/10.1007/978-3-030-20876-9_6.

Ahire, D.B., Gond, V.J. & Chopade, J.J. 2022. Geometrical parameter optimization of planner square-shaped printed spiral coil for efficient wireless power transfer system to biomedical implant application. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2, art.number:100045. Available at: https://doi.org/10.1016/j.prime.2022.100045.

Anderson, E.F. 2018. Turtle Fractals and Spirolaterals: Effective Assignments for Novice Graphics Programmers. In: Eurographics 2018, Delft, The Netherlands, pp.39-42, April 20 [online]. Available at: https://eprints.bournemouth.ac.uk/30590/ [Accessed: 05.06.2024].

Chien, C.-T., Ju, R.-Y., Chou, K.-Y. & Chiang, J.-S. 2024. YOLOv9 for fracture detection in pediatric wrist trauma X-ray images. Electronics Letters, 60(11), e13248. Available at: https://doi.org/10.1049/ell2.13248.

Couraud, B., Deleruyelle, T., Vauche, R., Flynn, D. & Daskalakis, S.N. 2020. A low complexity design framework for nfc-rfid inductive coupled antennas. IEEE Access, 8, pp.111074-111088. Available at: https://doi.org/10.1109/ACCESS.2020.3001610.

Derkaoui, M., Benhadda, Y., Hamid, A. & Temmar, A. 2021. Design and Modeling of Octagonal Planar Inductor and Transformer in Monolithic Technology for RF Systems. Journal of Electrical Engineering & Technology, 16(3), pp.1481-1493. Available at: https://doi.org/10.1007/s42835-021-00692-x.

Im, J.-H. & Hur, J. 2021. Proposing new planar-type search coil for permanent magnet synchronous motor: Design and application for position estimation. IEEE Access, 9, pp.129078-129087. Available at: https://doi.org/10.1109/ACCESS.2021.3113384.

Kharbouch, H., Hamid, A., Lebey, T., Bley, V., Havez, L. & Combette, C. 2017. Using the variable width in a planar inductor on Kapton for optimizing its performance. Turkish Journal of Electrical Engineering and Computer Sciences, 25(5), pp.3798-3810. Available at: https://doi.org/10.3906/elk-1606-343.

Luo, Z. & Wei, X. 2017. Analysis of Square and Circular Planar Spiral Coils in Wireless Power Transfer System for Electric Vehicles. IEEE Transactions on Industrial Electronics, 65(1), pp.331-341. Available at: https://doi.org/10.1109/TIE.2017.2723867.

Mishra, S., Verma, V., Akhtar, N., Chaturvedi, S. & Perwej, Y. 2022. An Intelligent Motion Detection Using OpenCV. International Journal of Scientific Research in Science, Engineering and Technology, 9(2), pp.51-63. Available at: https://doi.org//10.32628/IJSRSET22925.

Mohamad, M., Saman, M.Y.M. & Hitam, M.S. 2015. A Review on OpenCV. ResearchGate, August Available at: https://doi.org/10.13140/RG.2.1.2269.8721.

Mohan, S.S., del Mar Hershenson, M., Boyd, S.P. & Lee, T.H. 1999. Simple accurate expressions for planar spiral inductances. IEEE Journal of Solid-State Circuits, 34(10), pp.1419-1424. Available at: https://doi.org/10.1109/4.792620.

Mostafa, S.A.M., Wang, J., Holt, B. & Wang, J. 2024. YOLO based Ocean Eddy Localization with AWS SageMaker. arXiv:2404.06744v1, 10 April. Available at: https://doi.org/10.48550/arXiv.2404.06744.

Ni, J., Khan, Z., Wang, S., Wang, K. & Haider, S.K. 2016. Automatic detection and counting of circular shaped overlapped objects using circular hough transform and contour detection. In: 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, pp.2902-2906, June 12-15. Available at: https://doi.org/10.1109/WCICA.2016.7578268.

Otsu, N. 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), pp.62-66. Available at: https://www.doi.org/10.1109/TSMC.1979.4310076.

Paulin, G. & Ivasic‐Kos, M. 2023. Review and analysis of synthetic dataset generation methods and techniques for application in computer vision. Artificial Intelligence Review, 56(9), pp.9221-9265. Available at: https://doi.org/10.1007/s10462-022-10358-3.

Richardson, E., Sela, M. & Kimmel, R. 2016. 3D Face Reconstruction by Learning from Synthetic Data. In: 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, pp.460-469, October 25-28. Available at: https://doi.org/10.1109/3DV.2016.56.

Wang, C.-Y., Yeh, I.-H. & Liao, H.-Y.M. 2024. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv:2402.13616v2, 29 February. Available at: https://doi.org/10.48550/arXiv.2402.13616.

Xie, G. & Lu, W. 2013. Image Edge Detection Based On Opencv. International Journal of Electronics and Electrical Engineering, 1(2), pp.104-106. Available at: https://doi.org/10.12720/ijeee.1.2.104-106.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi