Детекција симптома изазваних коришћењем симулатора заснована на електрогастрографском сигналу уз примену дискретне трансформације таласићима и машинског учења: студија случаја

Ključne reči: simptomi mučnine, diskretna transformacija talasićima, elektrogastrografija, odabir obeležja, mašinsko učenje, virtuelna realnost, spektralna gustina snage

Sažetak


Увод/циљ: Примена виртуелне реалности (ВР) и симулатора пружа исплатив и интуитиван приступ војној обуци. Међутим, могућност појаве мучнине, која је изазвана коришћењем симулатора (симптома мучнине – СМ), ограничава њихову ширу примену.

Методе: Ово истраживање уводи објективне параметре за детекцију СМ, коришћењем троканалног електрогастрограма (ЕГГ) снимљеног на једном испитанику, и процењује независност и линеарну корелацију за одговарајући избор једног канала. Примењена је дискретна трансформација таласићима (ДТТ) са три нивоа на изабрани ЕГГ канал, како би се идентификовала кључна обележја која указују на поремећај рада желуца. Поред тога, евалуиран је опоравак након СМ, настао услед коришћења ВР, а анализирана је и примена машинског учења (МУ) без надгледања за сегментацију ЕГГ на основни сегмент и сегмент током СМ, коришћењем претходно идентификованих обележја од значаја.

Резултати и дискусија: Анализа показује да нема значајних разлика између три ЕГГ канала, као и умерену до ниску линеарну корелацију између парова канала. Избор обележја сугерише да се применом средње квадратне вредности амплитуде, као и максималне и просечне вредности спектралне густине снаге (СГС), израчунате на свим ДТТ кое- фицијентима, успешно детектује СМ, док примена доми- нантне скале ЕГГ није указала на присуство СМ ни за један ниво декомпозиције. Поред тога, показано је да се знаци опоравка појављују приближно 8 минута након првог ВР искуства, што указује на то да се више ВР сесија може спровести истог дана, односно да је интензивна ВР обука могућа.

Закључак: Примена МУ без надгледања има потенцијал у идентификацији ЕГГ сегмената током СМ уз издвајање обележја заснованих на ДТТ, нудећи нови приступ у превен- цији појаве СМ у војној обуци заснованој на ВР, као и другим областима повезаним са ВР технологијом.

Reference

Akansu, A.N. & Haddad, R.A. 2001. Multiresolution signal decomposition: Transforms, subbands, and wavelets, 2nd Edition. San Diego: Academic Press. ISBN 978-0-12-047141-6.

Bruzzone, A.G. & Massei, M. 2017. Simulation-Based Military Training. In: Mittal, S., Durak, U. & Ören, T. (Eds.) Guide to Simulation-Based Disciplines. Simulation Foundations, Methods and Applications. pp. 315–361. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-61264-5_14.

Cacioppo, J.T., Tassinary, L.G. & Berntson, G. 2007. Handbook of psychophysiology. Cambridge University Press. ISBN 9781139461931.

Dennison, M.S., D’Zmura, M., Harrison, A.V., Lee, M. & Raglin, A.J. 2019. Improving motion sickness severity classification through multi-modal data fusion. In: Pham, T. (Eds.) Proceedings Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications. Vol. 11006, art.number:110060T. Available at: https://doi.org/10.1117/12.2519085.

Dennison, M.S., Zachary Wisti, A. & D’Zmura, M. 2016. Use of physiological signals to predict cybersickness. Displays, 44, pp. 42–52. Available at: https://doi.org/10.1016/j.displa.2016.07.002.

Gruden, T., Popović, N.B., Stojmenova, K., Jakus, G., Miljković, N., Tomažič, S. & Sodnik, J. 2021. Electrogastrography in Autonomous Vehicles—An Objective Method for Assessment of Motion Sickness in Simulated Driving Environments. Sensors, 21(2), art.number:550. Available at: https://doi.org/10.3390/s21020550.

Géron, A. 2022. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd ed). Sebastopol, California: O’Reilly Media, Inc. ISBN 9781098122478.

Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., Van Kerkwijk, M.H., Brett, M., Haldane, A., Del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. & Oliphant, T.E. 2020. Array programming with NumPy. Nature, 585, pp. 357–362. Available at: https://doi.org/10.1038/s41586-020-2649-2.

Hunter, J.D. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), pp. 90–95. Available at: https://doi.org/10.1109/MCSE.2007.55.

Isu, N., Hasegawa, T., Takeuchi, I. & Morimoto, A. 2014. Quantitative analysis of time-course development of motion sickness caused by in-vehicle video watching. Displays, 35(2), pp. 90–97. Available at: https://doi.org/10.1016/j.displa.2014.01.003.

Jakus, G., Sodnik, J. & Miljković, N. 2022. Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator. Sensors, 22(22), art.number:8616. Available at: https://doi.org/10.3390/s22228616.

Kaiser, J. & Schafer, R. 1980. On the use of the I0-sinh window for spectrum analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(1), pp. 105–107. Available at: https://doi.org/10.1109/TASSP.1980.1163349.

Kara, S., Dirgenali, F. & Okkesim, S. 2005. Estimating Gastric Rhythm Differences Using a Wavelet Method from the Electrogastrograms of Normal and Diabetic Subjects. Instrumentation Science & Technology, 33(5), pp. 519–532. Available at: https://doi.org/10.1080/10739140500222907.

Keshavarz, B. & Hecht, H. 2011. Validating an Efficient Method to Quantify Motion Sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(4), pp. 415–426. Available at: https://doi.org/10.1177/0018720811403736.

Keshavarz, B., Peck, K., Rezaei, S. & Taati, B. 2022. Detecting and predicting visually induced motion sickness with physiological measures in combination with machine learning techniques. International Journal of Psychophysiology, 176, pp. 14–26. Available at: https://doi.org/10.1016/j.ijpsycho.2022.03.006.

Kim, Y.Y., Kim, H.J., Kim, E.N., Ko, H.D. & Kim, H.T. 2005. Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), pp. 616–625. Available at: https://doi.org/10.1111/j.1469-8986.2005.00349.x.

Kuhl, J., Evans, D., Papelis, Y., Romano, R. & Watson, G. 1995. The Iowa Driving Simulator: an immersive research environment. Computer, 28(7), pp. 35–41. Available at: https://doi.org/10.1109/2.391039.

LaViola, J.J. 2000. A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin, 32(1), pp. 47–56. Available at: https://doi.org/10.1145/333329.333344.

Lee, B.H. & Kuo, S. 2001. Real-Time Digital Signal Processing: Implementaions, Applications and Experiements with the TMS320C55X. Wiley Hoboken, NJ, USA. ISBN 1-280-55452-5.

McKinney, W. 2010. Data Structures for Statistical Computing in Python. In: Van der Walt, S. & Millman, J. (Eds.) Proceedings of the 9th Python in Science Conference. Austin, Texas, pp.56-61, June 28 - July 3. Available at: https://doi.org/10.25080/Majora-92bf1922-00a.

McKnight, P.E. & Najab, J. 2010. Mann-Whitney U Test. The Corsini Encyclopedia of Psychology. 30 January. Available at: https://doi.org/10.1002/9780470479216.corpsy0524.

Merchant, W. & Kirollos, R. 2022. An Overview of Cybersickness Self-Report Measures for use in Defence Research and Development Canada Experiments, Reference Document DRDC-RDDC-2022-D063. Defence Research and Development Canada. [online]. Available at: https://cradpdf.drdc-rddc.gc.ca/PDFS/unc392/p814963_A1b.pdf [Accessed: 10 June 2024].

Meta. 2024. Epic Roller Coasters [online]. Available at: https://www.meta.com/experiences/pcvr/epic-roller-oasters/1477883658957255/#reviews [Accessed: 10 June 2024].

Miljković, N., Popović, N.B., Prodanov, M. & Sodnik, J. 2019. Assessment of sickness in virtual environments. In: Konjović, Z., Zdravković, M. & Trajanović, M. (Eds.) Proceedings of the 9th International Conference on Information Society and Technology (ICIST 2019). Kopaonik, Serbia, pp.76-81, March 10-13 [online]. Available at: https://www.eventiotic.com/eventiotic/files/Papers/URL/f412a358-82d8-46aa-b0c9-6ad30de5890d.pdf [Accessed: 10 June 2024] ISBN: 978-86-85525-24-7.

Miljković, N., Popović, N.B. & Sodnik, J. 2023. Electrogastrogram Signal Processing: Techniques and Challenges with Application for Simulator Sickness Assessment. In: Biomedical Signal Processing, 1st Edition, pp.62-89. CRC Press [online]. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003201137-4/electrogastrogram-signal-processing-nadica-miljkovi%C4%87-nenad-popovi%C4%87-jaka-sodnik [Accessed: 10 June 2024] ISBN: 9781003201137.

Miljković, N. & Sodnik, J. 2023. Towards Objective Assessment of Driving Simulation Sickness: Pros and Cons of Stomach Electrical Activity. In: Kemeny, A., Chardonnet, J.-R. & Colombet, F. (Eds.) Proceedings of the Driving Simulation Conference 2023 Europe VR. Antibes Juan-les-Pins, France, pp.81-88, September 6-8 [online]. Available at: https://proceedings.driving-simulation.org/proceeding/dsc-2023/towards-objective-assessment-of-driving-simulation-sickness -pros-and-cons-of-stomach-electrical-activity/ [Accessed: 10 June 2024] ISBN: 978-2-9573777-3-2.

NATO Science and Technology Office. 2021. Guidelines for Mitigating Cybersickness in Virtual Reality Systems. Peer-reviewed Final Report of the Human Factors and Medicine Panel/Modeling and Simulations Group, Activity Number 323 (NATO STO-TR-HFM-MSG-323) [online]. Available at: https://apps.dtic.mil/sti/pdfs/AD1183673.pdf [Accessed: 10 June 2024].

O’Grady, G., Angeli, T.R., Paskaranandavadivel, N., Erickson, J.C., Wells, C.I., Gharibans, A.A., Cheng, L.K. & Du, P. 2018. Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Reviews in Biomedical Engineering, 12, pp. 287–302. Available at: https://doi.org/10.1109/RBME.2018.2867555.

O’Grady, G., Du, P., Cheng, L.K., Egbuji, J.U., Lammers, W.J.E.P., Windsor, J.A. & Pullan, A.J. 2010. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299(3), pp. G585–G592. Available at: https://doi.org/10.1152/ajpgi.00125.2010.

Oppenheim, A.V. 2008. Discrete-time Signal Processing, 2nd Edition. Pearson Education. ISBN 9788131704929.

Parkman, H.P., Hasler, W.L., Barnett, J. & Eaker, E. 2003. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterology & Motility, 15(2), pp. 89–102. Available at: https://doi.org/10.1046/j.1365-2982.2003.00396.x.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay, E. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, pp. 2825–2830 [online]. Available at: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf [Accessed: 10 June 2024].

Percival, D.B. & Walden, A.T. 2006. Wavelet Methods for Time Series Analysis (Cambridge Series in Statistical and Probabilistic Mathematics, Series Number 4). Cambridge University Press. ISBN 9780521685085.

Popović, N.B. 2021. Methods for assessment of electrical activity of smooth muscles. Phd thesis, Belgrade, Serbia: University of Belgrade, School of Electrical Engineering. [online]. Available at: https://nardus.mpn.gov.rs/handle/123456789/18615 [Accessed: 10 June 2024].

Popović, N.B., Miljković, N. & Popović, M.B. 2019a. Simple gastric motility assessment method with a single-channel electrogastrogram. Biomedical Engineering/Biomedizinische Technik, 64(2), pp. 177–185. Available at: https://doi.org/10.1515/bmt-2017-0218.

Popović, N.B., Miljković, N., Stojmenova, K., Jakus, G., Prodanov, M. & Sodnik, J. 2019b. Lessons Learned: Gastric Motility Assessment During Driving Simulation. Sensors, 19(14), art.number:3175. Available at: https://doi.org/10.3390/s19143175.

Seabold, S. & Perktold, J. 2010. Statsmodels: Econometric and Statistical Modeling with Python. In: Van der Walt, S. & Millman, J. (Eds.) Proceedings of the 9th Python in Science Conference. Austin, Texas, pp.92-96, June 28-July 3. Available at: https://doi.org/10.25080/Majora-92bf1922-011.

Stern, R.M., Koch, K.L., Stewart, W.R. & Lindblad, I.M. 1987. Spectral analysis of tachygastria recorded during motion sickness. Gastroenterology, 92(1), pp. 92–97. Available at: https://doi.org/10.1016/0016-5085(87)90843-2.

Tecknotrove. 2023. Role of defense simulator training in enhancing national security. Tecknotrove.com, 26 September [online]. Available at: https://tecknotrove.com/role-of-defence-simulator-training-in-national-security/ [Accessed: 10 June 2024].

Tian, N., Achache, K.H., Ben Mustapha, A.R. & Boulic, R. 2023. EGG Objective characterization of cybersickness symptoms towards navigation axis. In: 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). Shanghai, China, pp.289-297, March 25-28. Available at: https://doi.org/10.1109/VRW58643.2023.00068.

Tian, N. & Boulic, R. 2024. Who says you are so sick? An investigation on individual susceptibility to cybersickness triggers using EEG, EGG and ECG. IEEE Transactions on Visualization and Computer Graphics, 30(5), pp. 2379–2389. Available at: https://doi.org/10.1109/TVCG.2024.3372066.

Tokmakçi, M. 2007. Analysis of the Electrogastrogram Using Discrete Wavelet Transform and Statistical Methods to Detect Gastric Dysrhythmia. Journal of Medical Systems, 31(4), pp. 295–302. Available at: https://doi.org/10.1007/s10916-007-9069-9.

Valens, C. 1999. A really friendly guide to wavelets. [online]. Available at: https://www.cs.unm.edu/~williams/cs530/arfgtw.pdf [Accessed: 10 June 2024].

Van Rossum, G. & Drake, F.L. 1995. Python reference manual, Release 2.1.1. Amsterdam, The Netherlands: Stichting Mathematisch Centrum. ISBN 1441412697.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J. & SciPy1.0Contributors. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 17, pp. 261–272. Available at: https://doi.org/10.1038/s41592-019-0686-2.

Vlačić, S.I., Knežević, A.Z., Mandal, S., Rođenkov, S. & Vitsas, P. 2020. Improving the pilot selection process by using eye-tracking tools. Journal of Eye Movement Research, 12(3). Available at: https://doi.org/10.16910/jemr.12.3.4.

Woolson, R.F. 2005. Wilcoxon Signed-Rank Test. In: Encyclopedia of Biostatistics. 15 July. Available at: https://doi.org/10.1002/0470011815.b2a15177.

Yang, A.H.X., Kasabov, N. & Cakmak, Y.O. 2022. Machine learning methods for the study of cybersickness: a systematic review. Brain Informatics, 9, art.number:24. Available at: https://doi.org/10.1186/s40708-022-00172-6.

Objavljeno
2025/02/02
Rubrika
Originalni naučni radovi