Optimalno rešenje nosača jednogredne mosne dizalice primenom algoritma Moljca

  • Goran V. Pavlović Univerzitet u Kragujevcu, Fakultet za mašinstvo i građevinarstvo u Kraljevu, Katedra za tešku mašinogradnju, Kraljevo, Republika Srbija https://orcid.org/0000-0002-7230-1908
  • Mile M. Savković Univerzitet u Kragujevcu, Fakultet za mašinstvo i građevinarstvo u Kraljevu, Katedra za tešku mašinogradnju, Kraljevo, Republika Srbija https://orcid.org/0000-0002-4501-9149
  • Nebojša B. Zdravković Univerzitet u Kragujevcu, Fakultet za mašinstvo i građevinarstvo u Kraljevu, Katedra za tešku mašinogradnju, Kraljevo, Republika Srbija https://orcid.org/0000-0001-6387-2816
  • Goran Đ. Marković Univerzitet u Kragujevcu, Fakultet za mašinstvo i građevinarstvo u Kraljevu, Katedra za tešku mašinogradnju, Kraljevo, Republika Srbija https://orcid.org/0000-0002-0957-0718
  • Predrag Z. Mladenović Univerzitet u Kragujevcu, Fakultet za mašinstvo i građevinarstvo u Kraljevu, Katedra za tešku mašinogradnju, Kraljevo, Republika Srbija https://orcid.org/0000-0002-3315-4642
Ključne reči: mosna dizalica, zavareni nosač, MKE, optimizacija, metaheuristika

Sažetak


Uvod/cilj: U radu se analizira i optimizira zavareni I-nosač jednogredne mosne dizalice sa U-profilom kao gornjom lamelom. Ovo rešenje obezbeđuje lakšu noseću konstrukciju, tako da je glavni cilj minimiziranje težine glavnog nosača, odnosno površine poprečnog preseka, uz ispunjavanje uslova definisanih nacionalnim standardima i geometrijskim ograničenjima.

Metode: Algoritam Moljca (MFO) izabran je za rešavanje ovog jednociljnog višekriterijumskog zadatka optimizacije primenom MATLAB-a. Takođe, rezultati su verifikovani korišćenjem metode konačnih elemenata (MKE).

Rezultati: Predloženi oblik nosača je opravdan na primerima realnih rešenja jednogrednih mosnih dizalica. U ovom slučaju postižu se značajne uštede u materijalu i bolji rezultati u odnosu na primere iz prethodnog istraživanja.

Zaključak: Predloženi oblik nosača, metodologija, algoritam optimizacije i ostvarene uštede u potpunosti opravdavaju ovo istraživanje. Pored toga, ovaj algoritam omogućava primenu mnogih funkcija ograničenja, pri čemu se u relativno kratkom periodu dobijaju optimalne vrednosti brojnih varijabli. Zbog toga, primenom metoda analitičke optimizacije ne bi bilo moguće naći rešenje za takav inženjerski zadatak.

Reference

Cvijović G.M. & Bošnjak S.M. 2016. Calculation methods' comparative analysis of monorail hoist crane local bending effects. Tehnika, 71(4), pp.563-570 (in Serbian). Available at: https://doi.org/10.5937/tehnika1604563C.

Ellifritt, D.S. & Lue, D.M. 1998. Design of Crane Runway Beam with Channel. Engineering Journal, 35(2), pp.41-49. Available at: https://doi.org/10.62913/engj.v35i2.699.

Gąska, D., Haniszewski, T. & Margielewicz, J. 2017. I-beam girders dimensioning with numerical modelling of local stresses in wheel-supporting flanges. Mechanika, 23(3), pp.347-352. Available at: https://doi.org/10.5755/j01.mech.23.3.14083.

Jármai, K., Barcsák, C. & Marcsák, G.Z. 2021. A Box-Girder Design Using Metaheuristic Algorithms and Mathematical Test Functions for Comparison. Applied Mechanics, 2(4), pp.891-910. Available at: https://doi.org/10.3390/applmech2040052.

Jármai, K., Snyman, J.A., Farkas, J. & Gondos, G. 2003. Optimal design of a welded I-section frame using four conceptually different optimization algorithms. Structural and Multidisciplinary Optimization, 25, pp.54-61. Available at: https://doi.org/10.1007/s00158-002-0272-5.

Ky, V.S., Lenwari, A. & Thepchatri, T. 2014. Optimum Design of Steel Structures in Accordance with AISC 2010 Specification Using Heuristic Algorithm. Engineering Journal, 19(4), pp.71-82. Available at: https://doi.org/10.4186/ej.2015.19.4.71.

Mela, K. & Heinisuo, M. 2014. Weight and cost high strength steel beams. Engineering Structures, 79, pp.354-364. Available at: https://doi.org/10.1016/j.engstruct.2014.08.028.

Mirjalili, S. 2015. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, pp.228-249. Available at: https://doi.org/10.1016/j.knosys.2015.07.006.

Molnár, D., Blatnický, M. & Dižo, J. 2022. Comparison of Analytical and Numerical Approach in Bridge Crane Solution. Manufacturing Technology, 22(2), pp.192-199. Available at: https://doi.org/10.21062/mft.2022.018.

Ostrić, D.Z. & Tošić, S.B. 2005. Dizalice. Belgrade: University of Belgrade, Faculty of Mechanical Engineering (in Serbian). ISBN: 978-86-7083-520-7.

Pavlović, G., Jerman, B., Savković, M., Zdravković, N. & Marković, G. 2022. Metaheuristic applications in mechanical and structural design. Engineering Today, 1(1), pp.19-26. Available at: https://doi.org/10.5937/engtoday2201019P.

Pavlović, G. & Savković, M. 2022. Analysis and optimization of the main girder of the bridge crane with an asymmetric box cross-section. Scientific Technical Review, 72(1), pp.03-11. Available at: https://doi.org/10.5937/str2201003P.

Pavlović, G., Savković, M., Zdravković, N., Bulatović, R. & Marković, G. 2018. Analysis and Optimization Design of Welded I-girder of the Single-beam Bridge Crane. In: 2018 Forth International Conference Mechanical Engineering in the XXI Century MASING 2018, Niš, Serbia, pp.145-150, April 19-20 [online]. Available at: https://scidar.kg.ac.rs/handle/123456789/18843 [Accessed: 02 July 2024].

Pavlović, G.V., Zdravković, N.B., Savković, M.M., Bulatović, R.R. & Marković G.Đ. 2024. Light-weight design of an overhead crane’s girder with a non-symmetric box cross-section. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(3), pp.666-676. Available at: https://doi.org/10.1177/09544062231179079.

Petković, Z. & Ostrić, D. 1996. Metalne konstrukcije u teškoj mašinogradnji 1. Belgrade: University of Belgrade, Faculty of Mechanical Engineering (in Serbian). ISBN: 86-70803-274-7.

Qi, Q., Xu, G., Fan, X. & Wang, J. 2015. A new specular reflection optimization algorithm. Advances in Mechanical Engineering, 7(10), pp.1-10. Available at: https://doi.org/10.1177/1687814015610475.

Qin, D., Du, P., Zhu, Q. & Yang, J. 2015. Conceptual design of box girder based on three-dimensional topology optimization. In: 2015 11th World Congress on Structural and Multidisciplinary Optimisation, Sydney, Australia, June 07-12 [online]. Available at: https://www.aeromech.usyd.edu.au/WCSMO2015/papers/1420_paper.pdf [Accessed: 02 July 2024].

Różyło, P. 2016. Optimization of I-section profile design by the finite element method. Advances in Science and Technology Research Journal, 10(29), pp.52-56. Available at: https://doi.org/10.12913/22998624/61931.

Schaper, L., Jörg, F., Winkler, R., Kuhlmann, U. & Knobloch, M. 2019. The simplified method of the equivalent compression flange. Steel Construction, 12(4), pp.264-277. Available at: https://doi.org/10.1002/stco.201900033.

Sitthipong, S., Meengam, C., Chainarong., S. & Towatana, P. 2018. Design Analysis of Overhead Crane for Maintenance Workshop. In: MATEC Web of Conferences: International Conference on Metal Material Processes and Manufacturing (ICMMPM 2018), 207, art.number:02003. Available at: https://doi.org/10.1051/matecconf/201820702003.

Trahair, N.S. 2009. Lateral-distortional buckling of monorails. Engineering Structures, 31(12), pp.2873-2879. Available at: https://doi.org/10.1016/j.engstruct.2009.07.013.

Wang, P.F. & Diao, X.H. 2012. Optimization Design of the Crane Girder Based on Adaptive Genetic Algorithm. Advanced Materials Research, 591-593, pp.123-126. Available at: https://doi.org/10.4028/www.scientific.net/AMR.591-593.123.

Objavljeno
2024/09/28
Rubrika
Originalni naučni radovi