Numerička optimizacija širenja prsline u linearnom elastičnom materijalu pomoću metoda PFEMCT-SIF

  • Mohammed Bentahar Univerzitet u Saidi „Dr Mulai Tahar”, Tehnološki fakultet, Departman za građevinarstvo i hidrauliku, Saida, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-2166-678X
  • Noureddine Mahmoudi Univerzitet u Saidi „Dr Mulai Tahar”, Tehnološki fakultet, Departman za građevinarstvo i hidrauliku, Saida, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-9740-0857
  • Youcef Moulai Arbi Univerzitet „Mustafa Stamboli”, Laboratorija za kvantnu fiziku materije i matematičko modeliranje (LPQ3M), Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-6534-8820
Ključne reči: vrh prsline, širenje prsline, metoda SFEMCT-SIF, kriterijum MCSC i kriterijum po Richard-u, konture

Sažetak


Uvod/cilj: U ovoj studiji ispituje se uticaj broja kontura koje okružuju vrh prsline na faktore intenziteta napona (stress intensity factor - SIF) korišćenjem pristupa PFEMCT-SIF (Propagation Finite Element Method Crack Tip Stress Intensity Factor). Takođe, porede se kriterijum maksimalnog obodnog naprezanja (maximum circumferential stress criterion – MCSC) i kriterijum po Richard-u za predviđanje širenja prsline.

Metode: Kod konačnih elemenata, napisan u Visual Fortran-u, razvijen je za modelovanje vrhova prslina sa 3, 5, 10, 15 i 20 kontura pomoću  kvadratnih elemenata čistog opterećenja sa 4 čvora (CPE4). Softver Abaqus korišćen je za izračunavanje faktora intenziteta napona i uglova orijentacije prslina. Analizirane su horizontalne i nagnute prsline na čeličnoj ploči pri naponu na zatezanje. Rezultati su potvrđeni poređenjem sa analitičkim rešenjima i prethodnim numeričkim studijama.

Rezultati: Model sa 10 kontura pokazao je najbolje slaganje sa analitičkim vrednostima faktora intenziteta napona. Povećanje broja kontura poboljšalo je preciznost faktora intenziteta napona kod horizontalnih prslina, dok je prevelika gustina mreže dovela do divergencije kod nagnutih prslina. Oba kriterijuma (MCSC i  Richard) dala su uporedive putanje prsline, pri čemu je kriterijum maksimalnog obodnog naprezanja pokazao nešto veću preciznost.

Zaključak: Metoda PFEMCT-SIF efikasno procenjuje faktore intenziteta napona i predviđa puteve širenja prslina. Model vrha prsline sa 10 kontura predstavlja balans između preciznosti i računarske efikasnosti. Istaknuta je važnost optimizacije gustine mreže vrha prsline u simulacijama mehanike loma.

Reference

Alshoaibi, A. 2018. A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis. Journal of Computational Applied Mechanics, 49(2), pp.335-341. Available at: https://doi.org/10.22059/JCAMECH.2018.264698.319.

Alshoaibi, A.M. 2015. Finite Element Modelling of Mixed Mode Crack Propagation. International Journal of Soft Computing and Engineering (IJSCE), 5(5), pp.61-66 [online]. Available at: https://www.ijsce.org/portfolio-item/e2745115515 [Accessed: 12 August 2024].

Alshoaibi, A.M. & Ariffin, A.K. 2008. Fatigue life and crack path prediction in 2D structural components using an adaptive finite element strategy. International Journal of Mechanical and Materials Engineering (IJMME), 3(1), pp.97-104.

Ayatollahi, M.R. & Sedighiani, K. 2012. Mode I fracture initiation in limestone by strain energy density criterion. Theoretical and Applied Fracture Mechanics, 57(1), pp.14-18. Available at: https://doi.org/10.1016/j.tafmec.2011.12.003.

Barsoum, R.S. 1976. On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering, 10, pp.25-37. Available at: https://doi.org/10.1002/nme.1620100103.

Benamara, N., Boulenouar, A., Aminallah, M. & Benseddiq, N. 2017. On the mixed-mode crack propagation in FGMs plates: comparison of different criteria. Structural Engineering and Mechanics, 61(3), pp.371-379. Available at: https://doi.org/10.12989/sem.2017.61.3.371.

Bentahar, M. 2023a. ALLDMD Dissipation Energy Analysis by the Method Extended Finite Elements of a 2D Cracked Structure of an Elastic Linear Isotropic Homogeneous Material. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM), 3(02), pp.1-8. Available at: https://doi.org/10.55529/jecnam.32.1.8.

Bentahar, M. 2023b. Fatigue Analysis of an Inclined Crack Propagation Problem by the X-FEM Method. International Journal of Applied and Structural Mechanics (IJASM), 3(04), pp.23-31. Available at: https://doi.org/10.55529/ijasm.34.23.31.

Bentahar, M. & Benzaama, H. 2023. Numerical Simulation of the Synthetic Strain Energy and Crack Characterization Parameters Using the Fem Method of a Two-Dimensional Multi-Position Model. Selcuk University Journal of Engineering Sciences, 22(03), pp.100-109 [online]. Available at: https://hdl.handle.net/20.500.12395/52415 [Accessed: 12 August 2024].

Bentahar, M., Benzaama, H. & Mahmoudi, N. 2021a. Numerical Modeling of the Evolution of the Strain Energy ALLSE of the Crack Propagation by The X-FEM Method. Revue des matériaux et énergies renouvelables, 5(2), pp.24-31 [online]. Available at: https://www.asjp.cerist.dz/en/article/167392 [Accessed: 12 August 2024].

Bentahar, M., Benzaama, H. & Mahmoudi, N. 2021b. Numerical modeling of the contact effect on the parameters of cracking in a 2D Fatigue Fretting Model. Fracture and Structural Integrity, 15(57), pp.182-194. Available at: https://doi.org/10.3221/IGF-ESIS.57.15.

Bentahar, M., Moulai Arbi, Y. & Mahmoudi, N. 2024. Finite element analysis of characterization parameters the double cracks in linear elastic DCFEM. Studies in Engineering and Exact Sciences, 5(2), e5929. Available at: https://doi.org/10.54021/seesv5n2-039.

Bouchard, P.-O. 2000. Contribution à la Modélisation Numérique en Mécanique de la Rupture et Structures Multimatériaux. PhD thesis. École Nationale Supérieure des Mines de Paris [online]. Available at: https://pastel.archives-ouvertes.fr/tel-00480372 [Accessed: 12 August 2024].

Bouchard, P.-O., Bay, F. & Chastel, Y. 2003. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Computer Methods in Applied Mechanics and Engineering, 192(35-36), pp.3887-3908. Available at: https://doi.org/10.1016/S0045-7825(03)00391-8.

Boulenouar, A. & Bendida, N. 2019. Crack growth path simulation in a cement mantle of THR using crack box technique. Journal of Theoretical and Applied Mechanics, 57(2), pp.317-329. Available at: https://doi.org/10.15632/jtam-pl/104512.

Boulenouar, A., Benouis, A. & Benseddiq, N. 2016a. Numerical Modelling of Crack Propagation in Cement PMMA: Comparison of Different Criteria. Materials Research, 19(4), pp.846-855. Available at: https://doi.org/10.1590/1980-5373-MR-2015-0784.

Boulenouar, A., Benseddiq, N. & Mazari, M. 2013. Strain energy density prediction of crack propagation for 2D linear elastic materials. Theoretical and Applied Fracture Mechanics, 67-68, pp.29-37. Available at: https://doi.org/10.1016/j.tafmec.2013.11.001.

Boulenouar, A., Benseddiq, N., Mazari, M. & Benamara, N. 2014. FE model for linear-elastic mixed mode loading: estimation of SIFs and crack propagation. Journal of Theoretical and Applied Mechanics, 52(2), pp.373-383 [online]. Available at: http://jtam.pl/FE-model-for-linear-elastic-mixed-mode-loading-estimation-of-SIFs-and-crack-propagation,102170,0,2.html [Accessed: 12 August 2024].

Boulenouar, A., Benseddiq, N., Merzoug, M., Benamara, N. & Mazari, M. 2016b. A strain energy density theory for mixed mode crack propagation in rubber-like materials. Journal of Theoretical and Applied Mechanics, 54(4), pp.1417-1431. Available at: https://doi.org/10.15632/jtam-pl.54.4.1417.

Carpinteri, A. 1984. Size effects in material strength due to crack growth and material non-linearity. Theoretical and applied fracture mechanics, 2(1), pp.39-45. Available at: https://doi.org/10.1016/0167-8442(84)90038-7.

Cho, J.-R. 2015. Computation of 2-D mixed-mode stress intensity factors by Petrov-Galerkin natural element method. Structural Engineering and Mechanics, 56(4), pp.589-603. Available at: https://doi.org/10.12989/sem.2015.56.4.589.

Choi, D.H., Choi, H.Y. & Lee, D. 2006. Fatigue life prediction of in-plane gusset welded joints using strain energy density factor approach. Theoretical and Applied Fracture Mechanics, 45(2), pp.108-116. Available at: https://doi.org/10.1016/j.tafmec.2006.02.003.

Chow, C.L. & Jilin, X. 1985. Application of the strain energy density criterion to ductile fracture. Theoretical and Applied Fracture Mechanics, 3(3), pp.185-191. Available at: https://doi.org/10.1016/0167-8442(85)90029-1.

Erdogan, F. & Sih, G.C 1963. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. Journal of Basic Engineering, 85(4), pp.519-525. Available at: https://doi.org/10.1115/1.3656897.

Ewalds, H.L. & Wanhill, R.J.H. 1984. Fracture Mechanics. Oxford, UK: Butterworth-Heinemann LtdI. SBN: 978-0713135152.

Fiordalisi, S. 2014. Modélisation tridimensionelle de la fermeture induite par plasticité lors de la propagation d'une fissure de fatigue dans l'acier 304L. PhD thesis. Poitiers, France: École doctorale Sciences et ingénierie des matériaux, mécanique, énergétique et aéronautique [online]. Available at: https://theses.fr/2014ESMA0018 [Accessed: 12 August 2024].

Hamdi, A., Aït Hocine, N., Nait Abdelaziz, M. & Benseddiq, N. 2007. Fracture of elastomers under static mixed mode: the strain-energy-density factor. International Journal of Fracture, 144, pp.65-75. Available at: https://doi.org/10.1007/s10704-007-9080-7.

Komori, K. 2005. Ductile fracture criteria for simulating shear by node separation method. Theoretical and Applied Fracture Mechanics, 43(1), pp.101-114. Available at: https://doi.org/10.1016/j.tafmec.2004.12.006.

Malekan, M., Silva, L.L., Barros, F.B., Pitangueira, R.L.S. & Penna, S.S. 2018. Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach. Advances in Engineering Software, 115, pp.168-193. Available at: https://doi.org/10.1016/j.advengsoft.2017.09.005.

Paris, P. & Erdogan, F. 1963. A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering, 85(4), pp.528-533. Available at: https://doi.org/10.1115/1.3656900.

Pegorin, F., Kotousov, A., Berto, F., Swain, M.V. & Sornsuwan, T. 2012. Strain energy density approach for failure evaluation of occlusal loaded ceramic tooth crowns. Theoretical and Applied Fracture Mechanics, 58(1), pp.44-50. Available at: https://doi.org/10.1016/j.tafmec.2012.02.006.

Phongthanapanich, S. & Dechaumphai, P. 2004. Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design, 40(13-14), pp.1753-1771. Available at: https://doi.org/10.1016/j.finel.2004.01.002.

Rao, B.N. & Rahman, S. 2000. An efficient meshless method for fracture analysis of cracks. Computational Mechanics, 26, pp.398-408. Available at: https://doi.org/10.1007/s004660000189.

Richard, H.A. 1985. Bruchvorhersagen bei überlagerter Normal- und Schubbeanspruchung von Rissen. Düsseldorf: VDI-Verl. ISBN: 3188506317.

Rossmanith, H. 1984. Structural Failure, Product Liability and Technical Insurance. North-Holland. ISBN: 978-0444868695.

Sajith, S., Murthy, K.S.R.K & Robi, P.S. 2018. A simple technique for estimation of mixed mode (I/II) stress intensity factors. Journal of Mechanics of Materials and Structures, 13(2), pp.141-154. Available at: https://doi.org/10.2140/jomms.2018.13.141.

Sih, G.C. 1974. Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture, 10, pp.305-321. Available at: https://doi.org/10.1007/BF00035493.

Tada, H., Paris, P.C. & Irwin, G.R. 2000. The Stress Analysis of Cracks Handbook, Third Edition. ASME Press. Available at: https://doi.org/10.1115/1.801535.

Theocaris, P.S. 1984. A higher-order approximation for the T-criterion of fracture in biaxial fields. Engineering Fracture Mechanics, 19(6), pp.975-991. Available at: https://doi.org/10.1016/0013-7944(84)90144-9.

Yaylaci, M. 2016. The investigation crack problem through numerical analysis. Structural Engineering and Mechanics, 57(6), pp.1143-1156. Available at: https://doi.org/10.12989/sem.2016.57.6.1143.

Zaleha, M., Ariffin, A.K. & Muchtar, A. A. 2007. Prediction of Crack Propagation Direction for Holes Under Quasi-Static Loadingg. Computational & Experimental Mechanics, pp.141-151 [online]. Available at: https://core.ac.uk/download/17049988.pdf [Accessed: 12 August 2024].

Objavljeno
2025/02/02
Rubrika
Originalni naučni radovi