Statičko i dinamičko proučavanje spregnutih nosača sa novim interlaminarnim smičućim poljem korišćenjem različitih teorija nosača

  • Rachida Mohamed Krachaï Univerzitet „Đilali Liabes”, Tehnološki fakultet, Departman za građevinarstvo i javne radove, Laboratorija za građevinsko i ekološko inženjerstvo (LGCE), Sidi Bel Abes, Narodna Demokratska Republika Alžir + Univerzitet „Mustafa Stamboli”, Fakultet nauke i tehnologije, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-7530-433X
  • Noureddine Elmeiche Univerzitet „Đilali Liabes”, Tehno0loški fakultet, Departman za građevinarstvo i javne radove, Laboratorija za građevinsko i ekološko inženjerstvo (LGCE), Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-6412-0840
  • Ismail Mechab Univerzitet „Đilali Liabes”, Tehnološki fakultet, Departman za mašinstvo, Laboratorija za mehaniku i fiziku materijala (LMPM), Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-4922-6980
  • Fabrice Bernard Univerzitet u Renu, INSA Ren, Laboratorija za građevinarstvo i mašinstvo (LGCGM), Ren, Francuska Republika https://orcid.org/0000-0001-7495-936X
  • Hichem Abbad Univerzitet „Đilali Liabes”, Tehnološki fakultet, Departman za građevinarstvo i javne radove, Laboratorija za građevinsko i ekološko inženjerstvo (LGCE), Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0001-9896-5369
Ključne reči: statičko i dinamičko ispitivanje, spregnuti nosači, parcijalna interakcija, novo polje interlaminarnog smicanja, poprečno smicanje visokog reda, nova funkcija oblika savijanja, Ricov metod

Sažetak


Uvod/cilj: U ovom radu su statički i dinamički proučavani spregnuti nosači sastavljeni od dva spojena dela sa parcijalnom interakcijom između slojeva nosača, pri čemu je uzet u obzir efekat interlaminarnog smicanja. 

Metode: Uvodi se novo interlaminarno polje smicanja koje za svaki sloj uzima u obzir aksijalni pomeraj, rotaciju usled savijanja i poprečno smicanje visokog reda sa novom funkcijom oblika savijanja. Jednačine ravnoteže su rešene analitički na osnovu Hamiltonovog principa. Pri tome je numeričko rešavanje ovih jednačina bilo zasnovano na principu minimiziranja svih energija korišćenjem Ricovog metoda i različitih teorija nosećih greda. Zatim je urađena komparativna studija radi izračunavanja frekvencija prirodnih vibracija dva spregnuta nosača od čelika i drveta. 

Rezultati: Utvrđeno je da su rezultati dobijeni za deset frekvencija prirodnih vibracija u savršenom skladu sa onima iz prethodno objavljenih radova.

Zaključak: Urađena je detaljna studija na osnovu parametara geometrije i materijala za dva kompozita (beton-drvo i čelik-beton) sa dva interlaminarna polja smicanja, odnosno sa klasičnim poljem smicanja na osnovu teorije grede Timošenka i sa novim interlaminarnim poljem smicanja na osnovu teorije visokog reda. Savijanje je analizirano i statički radi ispitivanja uticaja interlaminarne sile smicanja na kratke kao i na dugačke grede.

Reference

Adam, C. & Furtmüller, T. 2020. Flexural vibrations of geometrically nonlinear composite beams with interlayer slip. Acta Mechanica, 231, pp.251-271. Available at: https://doi.org/10.1007/s00707-019-02528-2.

Barbosa, W.C.S., Bezerra, L.M., Chater, L. & Cavalcante, O.R.O. 2019. Experimental evaluation on the structural behavior of truss shear connectors in composite steel-concrete beams. Revista IBRACON de Estruturas e Materiais, 12(5), pp.1157-1182. Available at: https://doi.org/10.1590/S1983-41952019000500010.

Carvalho, T.A., Lemes, Í.J.M., Silveira, R.A.M., Dias, L.E.S. & Barros, R.C. 2021. Concentrated Approaches for Nonlinear Analysis of Composite Beams with Partial Interaction. ce/papers, 4(2-4), pp.715-722. Available at: https://doi.org/10.1002/cepa.1353.

Castel, A. 2013. Comportement vibratoire de structures composites intégrant des éléments amortissants. PhD thesis. Nevers, France: Université de Bourgogne, École doctorale Sciences pour l'ingénieur et microtechniques, Département de Recherche en Ingénierie des Véhicules pour l'Environnement (DRIVE) [online]. Available at: https://www.sudoc.fr/177960620 [Accessed: 06 December 2024].

Čas, B., Planinc, I. & Schnabl, S. 2018. Analytical solution of three-dimensional two-layer composite beam with interlayer slips. Engineering Structures, 173, pp.269-282. Available at: https://doi.org/10.1016/j.engstruct.2018.06.108.

Della Croce, L. & Venini, P. 2004. Finite elements for functionally graded Reissner–Mindlin plates. Computer Methods in Applied Mechanics and Engineering, 193(9-11), pp.705-725. Available at: https://doi.org/10.1016/j.cma.2003.09.014.

Galuppi, L. & Royer-Carfagni, G. 2014. Buckling of three-layered composite beams with viscoelastic interaction. Composite Structures, 107, pp.512-521. Available at: https://doi.org/10.1016/j.compstruct.2013.08.006.

Honarvar, H., Shayanfar, M., Babakhani, B. & Zabihi-Samani, M. 2020. Numerical Analysis of Steel-Concrete Composite Beam with Blind Bolt under Simultaneous Flexural and Torsional Loading. Civil Engineering Infrastructures Journal (CEIJ), 53(2), pp.379-393. Available at: https://doi.org/10.22059/ceij.2020.287376.1606.

Kant, T. & Swaminathan, K. 2001. Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories. Journal of Sound and Vibration, 241(2), pp.319-327. Available at: https://doi.org/10.1006/jsvi.2000.3232.

Le Grognec, P., Nguyen, Q.-H. & Hjiaj, M. 2012. Exact buckling solution for two-layer Timoshenko beams with interlayer slip. International Journal of Solids and Structures, 49(1), pp.143-150. Available at: https://doi.org/10.1016/j.ijsolstr.2011.09.020.

Lemes, Í.J.M., Dias, L.E.S., Silveira, R.A.M., Silva, A.R. & Carvalho, T.A. 2021. Numerical analysis of steel–concrete composite beams with partial interaction: A plastic-hinge approach. Engineering Structures, 248, art.number:113256. Available at: https://doi.org/10.1016/j.engstruct.2021.113256.

Lemes, Í.J.M., Silva, A.R.D., Silveira, R.A.M. & Rocha, P.A.S. 2017. Numerical analysis of nonlinear behavior of steel concrete composite structures. Revista IBRACON de Estruturas e Materiais, 10(1), pp.53-83. Available at: https://doi.org/10.1590/S1983-41952017000100004.

Lenci, S. & Clementi, F. 2012. Effects of shear stiffness, rotatory and axial inertia, and interface stiffness on free vibrations of a two-layer beam. Journal of Sound and Vibration, 331(24), pp.5247-5267. Available at: https://doi.org/10.1016/j.jsv.2012.07.004.

Mechab, I. 2005. Contribution à l'analyse des plaques stratifiées et sanduricly en utilisant les théories à ordre élevés. PhD thesis. Oran, Algeria : Université d'Oran1 - Ahmed Ben Bella, Département de Génie Civil [online]. Available at: https://www.pnst.cerist.dz/detail.php?id=16616 [Accessed: 06 December 2024].

Mindlin, R.D. 1951. Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic Elastic Plates. Journal of Applied Mechanics, 18(1), pp.31-38. Available at: https://doi.org/10.1115/1.4010217.

Nguyen, Q.H. 2009. Modelling of the nonlinear behaviour of composite beams taking into account time effects. PhD Thesis. Rennes, France: INSA Institut national des sciences appliquées de Rennes. Available at: https://doi.org/10.13140/RG.2.1.1706.9923.

Oliveira, L.A.M., Borghi, T.M., Rodrigues, Y.O. & El Debs, A.L.H.C. 2021. Assessment of design codes for the in-service behaviour of steel-concrete composite slabs. Revista IBRACON de Estruturas e Materiais, 14(5), e14501. Available at: https://doi.org/10.1590/S1983-41952021000500001.

Perkowski, Z. & Czabak, M. 2019. Description of behaviour of timber-concrete composite beams including interlayer slip, uplift, and long-term effects: Formulation of the model and coefficient inverse problem. Engineering Structures, 194, pp.230-250. Available at: https://doi.org/10.1016/j.engstruct.2019.05.058.

Reddy, J.N. 1984. A Simple Higher-Order Theory for Laminated Composite Plates. Journal Applied Mechanics, 51(4), pp.745-752. Available at: https://doi.org/10.1115/1.3167719.

Reissner, E. 1945. The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. Journal of Applied Mechanics, 12(2), pp.A69-A77. Available at: https://doi.org/10.1115/1.4009435.

Santos, H.A.F.A. 2020. Buckling analysis of layered composite beams with interlayer slip: A force based finite element formulation. Structures, 25, pp.542-553. Available at: https://doi.org/10.1016/j.istruc.2020.03.002.

Timoshenko, S. & Woinowsky-Krieger, S. 1959. Theory of Plates and Shells. McGraw-Hill Book Company. ISBN: 0-07-064779-8.

Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. & Bordas, S.P.A. 2013. NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Composite Structures, 99, pp.309-326. Available at: https://doi.org/10.1016/j.compstruct.2012.11.008.

Wang, C.M., Reddy, J.N. & Lee, K. H. 2000. Shear Deformable Beams and Plates: Relationships with Classical Solutions. Elsevier Science. Available at: https://doi.org/10.1016/B978-0-08-043784-2.X5000-X

Whitney, J.M. 1969. The Effect of Transverse Shear Deformation on the Bending of Laminated Plates. Journal of Composite Materials, 3(3), pp.534-547. Available at: https://doi.org/10.1177/002199836900300316.

Xu, R. & Wu, Y.-F. 2008. Free vibration and buckling of composite beams with interlayer slip by two-dimensional theory. Journal of Sound and Vibration, 313(3-5), pp.875-890. Available at: https://doi.org/10.1016/j.jsv.2007.12.029.

Yoo, S.-W., Choi, Y.-C., Choi, J.-H. & Choo, J.F. 2021. Nonlinear flexural analysis of composite beam with Inverted-T steel girder and UHPC slab considering partial interaction. Journal of Building Engineering, 34, art.number:101887. Available at: https://doi.org/10.1016/j.jobe.2020.101887.

Objavljeno
2025/02/02
Rubrika
Originalni naučni radovi