Static and dynamic study of composite beams with a new interlaminar sliding field using different beam theories

  • Rachida Mohamed Krachaï Djilali Liabes University, Faculty of Technology, Department of Civil Engineering and Public Works, Civil and Environmental Engineering Laboratory (LGCE), Sidi Bel-Abbes, People's Democratic Republic of Algeria + Mustapha Stambouli University, Faculty of Science and Technology, Department of Civil Engineering, Mascara, People's Democratic Republic of Algeria, https://orcid.org/0009-0004-7530-433X
  • Noureddine Elmeiche Djilali Liabes University, Faculty of Technology, Department of Civil Engineering and Public Works, Civil and Environmental Engineering Laboratory (LGCE), Sidi Bel-Abbes, People's Democratic Republic of Algeria https://orcid.org/0000-0002-6412-0840
  • Ismail Mechab Djilali Liabes University, Faculty of Technology, Department of Mechanical Engineering, Laboratory of Mechanics and Physics of Materials (LMPM), Sidi Bel-Abbes, People's Democratic Republic of Algeria https://orcid.org/0009-0004-4922-6980
  • Fabrice Bernard University of Rennes, INSA Rennes, Civil and Mechanical Engineering Laboratory (LGCGM), Rennes, French Republic https://orcid.org/0000-0001-7495-936X
  • Hichem Abbad Djilali Liabes University, Faculty of Technology, Department of Civil Engineering and Public Works, Civil and Environmental Engineering Laboratory (LGCE), Sidi Bel-Abbes, People's Democratic Republic of Algeria https://orcid.org/0000-0001-9896-5369
Keywords: static and dynamic study, composite beams, partial interaction, new interlaminar slip field, high order transverse shear, new warping shape function, Ritz method

Abstract


Introduction/purpose: The present work aims to carry out a static and dynamic investigation of composite beams composed of two elements connected together, with a partial interaction between the beam layers, while taking into account the interlaminar sliding effect.

Methods: A new interlaminar slip field which takes into account, for each layer, the axial displacement, the rotation due to bending, and the high-order transverse shear with a new warping shape function, has been introduced in this study. The equilibrium equations were solved analytically based on the principle of Hamilton. In addition, the numerical resolution of these equations was based on the principle of minimizing all energies using the Ritz method, while taking into account different beam theories. Afterwards, a comparative study was carried out in order to calculate the natural vibration frequencies of two composite beams made of steel and wood materials. 

Results: It was found that the results obtained for the ten natural vibration frequencies are in perfect agreement with those reported in previous works found in the literature.

Conclusion: Further, a detailed study was conducted, depending on the geometric and material parameters, for the two mixed materials, i.e., concrete-wood and steel-concrete, with two interlaminar sliding fields, namely the classical sliding field based on the Timoshenko beam theory and a new interlaminar sliding field that is based on the high order theory. Furthermore, bending was studied in the static case in order to examine the effect of the interlaminar shear force on short and long beams.

References

Adam, C. & Furtmüller, T. 2020. Flexural vibrations of geometrically nonlinear composite beams with interlayer slip. Acta Mechanica, 231, pp.251-271. Available at: https://doi.org/10.1007/s00707-019-02528-2.

Barbosa, W.C.S., Bezerra, L.M., Chater, L. & Cavalcante, O.R.O. 2019. Experimental evaluation on the structural behavior of truss shear connectors in composite steel-concrete beams. Revista IBRACON de Estruturas e Materiais, 12(5), pp.1157-1182. Available at: https://doi.org/10.1590/S1983-41952019000500010.

Carvalho, T.A., Lemes, Í.J.M., Silveira, R.A.M., Dias, L.E.S. & Barros, R.C. 2021. Concentrated Approaches for Nonlinear Analysis of Composite Beams with Partial Interaction. ce/papers, 4(2-4), pp.715-722. Available at: https://doi.org/10.1002/cepa.1353.

Castel, A. 2013. Comportement vibratoire de structures composites intégrant des éléments amortissants. PhD thesis. Nevers, France: Université de Bourgogne, École doctorale Sciences pour l'ingénieur et microtechniques, Département de Recherche en Ingénierie des Véhicules pour l'Environnement (DRIVE) [online]. Available at: https://www.sudoc.fr/177960620 [Accessed: 06 December 2024].

Čas, B., Planinc, I. & Schnabl, S. 2018. Analytical solution of three-dimensional two-layer composite beam with interlayer slips. Engineering Structures, 173, pp.269-282. Available at: https://doi.org/10.1016/j.engstruct.2018.06.108.

Della Croce, L. & Venini, P. 2004. Finite elements for functionally graded Reissner–Mindlin plates. Computer Methods in Applied Mechanics and Engineering, 193(9-11), pp.705-725. Available at: https://doi.org/10.1016/j.cma.2003.09.014.

Galuppi, L. & Royer-Carfagni, G. 2014. Buckling of three-layered composite beams with viscoelastic interaction. Composite Structures, 107, pp.512-521. Available at: https://doi.org/10.1016/j.compstruct.2013.08.006.

Honarvar, H., Shayanfar, M., Babakhani, B. & Zabihi-Samani, M. 2020. Numerical Analysis of Steel-Concrete Composite Beam with Blind Bolt under Simultaneous Flexural and Torsional Loading. Civil Engineering Infrastructures Journal (CEIJ), 53(2), pp.379-393. Available at: https://doi.org/10.22059/ceij.2020.287376.1606.

Kant, T. & Swaminathan, K. 2001. Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories. Journal of Sound and Vibration, 241(2), pp.319-327. Available at: https://doi.org/10.1006/jsvi.2000.3232.

Le Grognec, P., Nguyen, Q.-H. & Hjiaj, M. 2012. Exact buckling solution for two-layer Timoshenko beams with interlayer slip. International Journal of Solids and Structures, 49(1), pp.143-150. Available at: https://doi.org/10.1016/j.ijsolstr.2011.09.020.

Lemes, Í.J.M., Dias, L.E.S., Silveira, R.A.M., Silva, A.R. & Carvalho, T.A. 2021. Numerical analysis of steel–concrete composite beams with partial interaction: A plastic-hinge approach. Engineering Structures, 248, art.number:113256. Available at: https://doi.org/10.1016/j.engstruct.2021.113256.

Lemes, Í.J.M., Silva, A.R.D., Silveira, R.A.M. & Rocha, P.A.S. 2017. Numerical analysis of nonlinear behavior of steel concrete composite structures. Revista IBRACON de Estruturas e Materiais, 10(1), pp.53-83. Available at: https://doi.org/10.1590/S1983-41952017000100004.

Lenci, S. & Clementi, F. 2012. Effects of shear stiffness, rotatory and axial inertia, and interface stiffness on free vibrations of a two-layer beam. Journal of Sound and Vibration, 331(24), pp.5247-5267. Available at: https://doi.org/10.1016/j.jsv.2012.07.004.

Mechab, I. 2005. Contribution à l'analyse des plaques stratifiées et sanduricly en utilisant les théories à ordre élevés. PhD thesis. Oran, Algeria : Université d'Oran1 - Ahmed Ben Bella, Département de Génie Civil [online]. Available at: https://www.pnst.cerist.dz/detail.php?id=16616 [Accessed: 06 December 2024].

Mindlin, R.D. 1951. Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic Elastic Plates. Journal of Applied Mechanics, 18(1), pp.31-38. Available at: https://doi.org/10.1115/1.4010217.

Nguyen, Q.H. 2009. Modelling of the nonlinear behaviour of composite beams taking into account time effects. PhD Thesis. Rennes, France: INSA Institut national des sciences appliquées de Rennes. Available at: https://doi.org/10.13140/RG.2.1.1706.9923.

Oliveira, L.A.M., Borghi, T.M., Rodrigues, Y.O. & El Debs, A.L.H.C. 2021. Assessment of design codes for the in-service behaviour of steel-concrete composite slabs. Revista IBRACON de Estruturas e Materiais, 14(5), e14501. Available at: https://doi.org/10.1590/S1983-41952021000500001.

Perkowski, Z. & Czabak, M. 2019. Description of behaviour of timber-concrete composite beams including interlayer slip, uplift, and long-term effects: Formulation of the model and coefficient inverse problem. Engineering Structures, 194, pp.230-250. Available at: https://doi.org/10.1016/j.engstruct.2019.05.058.

Reddy, J.N. 1984. A Simple Higher-Order Theory for Laminated Composite Plates. Journal Applied Mechanics, 51(4), pp.745-752. Available at: https://doi.org/10.1115/1.3167719.

Reissner, E. 1945. The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. Journal of Applied Mechanics, 12(2), pp.A69-A77. Available at: https://doi.org/10.1115/1.4009435.

Santos, H.A.F.A. 2020. Buckling analysis of layered composite beams with interlayer slip: A force based finite element formulation. Structures, 25, pp.542-553. Available at: https://doi.org/10.1016/j.istruc.2020.03.002.

Timoshenko, S. & Woinowsky-Krieger, S. 1959. Theory of Plates and Shells. McGraw-Hill Book Company. ISBN: 0-07-064779-8.

Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. & Bordas, S.P.A. 2013. NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Composite Structures, 99, pp.309-326. Available at: https://doi.org/10.1016/j.compstruct.2012.11.008.

Wang, C.M., Reddy, J.N. & Lee, K. H. 2000. Shear Deformable Beams and Plates: Relationships with Classical Solutions. Elsevier Science. Available at: https://doi.org/10.1016/B978-0-08-043784-2.X5000-X

Whitney, J.M. 1969. The Effect of Transverse Shear Deformation on the Bending of Laminated Plates. Journal of Composite Materials, 3(3), pp.534-547. Available at: https://doi.org/10.1177/002199836900300316.

Xu, R. & Wu, Y.-F. 2008. Free vibration and buckling of composite beams with interlayer slip by two-dimensional theory. Journal of Sound and Vibration, 313(3-5), pp.875-890. Available at: https://doi.org/10.1016/j.jsv.2007.12.029.

Yoo, S.-W., Choi, Y.-C., Choi, J.-H. & Choo, J.F. 2021. Nonlinear flexural analysis of composite beam with Inverted-T steel girder and UHPC slab considering partial interaction. Journal of Building Engineering, 34, art.number:101887. Available at: https://doi.org/10.1016/j.jobe.2020.101887.

Published
2025/02/01
Section
Original Scientific Papers