Periodični semilinearni funkcionalni sistem inkluzije sa kašnjenjima zavisnim od stanja

Functional Differential Inclusions System with State-Dependent Delays

  • Khelifa Daoudi Laboratoire de Mathématiques,Université de Sidi Bel-Abbès, Algérie
  • Mohamed Belaidi

Sažetak


In this work, we establish several results about the existence and uniqueness of mild solutions for some periodic semi-linear functional differential inclusions system with state-dependent delays.

Reference

Ahmed, N.U. 1991. Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, ISBN-10: ‎ 0582065992.

Aubin, J.P. & Frankowska, H. 1990. Set-Valued Analysis, Birkhäuser, Boston ISBN: 978-0-8176-4847-3.

Daoudi, K. 2018. Contribution aux équations et inclusions différentielles à retard dépendant de l´etat, PhD thesis. Djillali Liabes University (in French).

Daoudi, K., Henderson J. & Ouahab, A. 2018. Existence and uniqueness of solutions for some neutral differential equations with state-dependent delays. Communications in Applied Analysis, (22) (3), 333-351. Available at:https://scholar.google.com/citations?view_op=view_citation&hl=ar&user=zSKiQwIAAAAJ&citation_for_view=zSKiQwIAAAAJ:u-x6o8ySG0sC

Djebali, S., Gorniewicz L. & Ouahab, A. 2010. First-order periodic impulsive semilinear differential inclusions: Existence and structure of solution sets. Mathematical and Computer Modelling, (52), 683-714. Available at:https://www.sciencedirect.com/science/article/pii/S0895717710002062

Górniewicz, L. 2006. Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications. Dordrecht: Springer. ISBN-10:

-4020-4665-0 (HB).

Hale, J. K. 1977. Theory of Functional Differential Equations. Springer-Verlag, New York. ISBN -13: 978-1-4612-9894-6.

Hale, J. K. & VerduynLunel, S. 1993. Introduction to Functional -Differential Equations, Applied Mathematical Sciences, Springer Science+Business Media, LLC. ISBN 978-1-4612-8741-4.

Kolmanovskii, V. & Myshkis, A. 1999. Introduction to the Theory and Applications of Functional-Differential Equations. SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. ISBN: 978-90-481-5148-6.

Mohamed, F. & Tayeb, B. 2019. Random semilinear system of differential equations with state-dependent delay. Advances in the Theory of Nonlinear Analysis and its Applications, (3) (1), pp.1-10. Available at:

https://doi.org/10.31197/atnaa.468807

Ouahab, A. 2015. Some Perov’s and Krasnoles’skii type fixed point results and application, Communications in Applied Analysis, (19), 623-642. Available at:https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=http://dynamicpublishers.com/CAA/CAA2015/45-CAA-623-642.pdf&ved=2ahUKEwjo2fT65OeHAxW0BdsEHadTOs4QFnoECBQQAQ&usg=AOvVaw02l6iVWcLXkehKN2V9qB8Z

Sinacer, M.L., Nieto, J.J. and Ouahab, A., 2016. Random fixed point theorem in generalized Banach space and applications. Random Operators and Stochastic Equations, 24(2), pp.93-112. Available at: https://www.degruyterbrill.com/document/doi/10.1515/rose-2016-0007/html

Wu, J. 1996. Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York. ISBN-13: 978-1-4612-8479-6.

Objavljeno
2025/10/13
Rubrika
Originalni naučni radovi