Numeričko istraživanje uticaja gustine čestica i brzine strujanja na transport i depoziciju čestica u prisustvu proizvoljno orijentisanog loma

  • Kheira Bouragaa Univerzitet Adrar, Fakultet nauke i tehnologije, Odeljenje za građevinarstvo, Laboratorija za održivi razvoj i IT (LDDI), Adrar, Narodna Demokratska Republika Alžir https://orcid.org/0009-0002-4908-9037
  • Lyacine Bennacer Univerzitet Adrar, Fakultet nauke i tehnologije, Odeljenje za građevinarstvo, Laboratorija za energetiku, životnu sredinu i informacione sisteme (LEESI), Adrar, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8547-6811
  • Mustapha Akacem Univerzitet Adrar, Fakultet nauke i tehnologije, Odeljenje za građevinarstvo, Laboratorija za održivi razvoj i IT (LDDI), Adrar, Narodna Demokratska Republika Alžir https://orcid.org/0000-0003-4126-5788
Ključne reči: sredine sa lomom, gustina čestica, ugao nagiba, brzina strujanja, disperzija, depozicija

Sažetak


Uvod/cilj: Odnedavno je znatno povećan interes za formacije sa lomom u okviru zadovoljavanja potreba za energijom i podzemnim vodama. Međutim, dvostruka uloga koju ima lom u transportu tečnosti i kontaminanata skreće pažnju na neophodnost daljih istraživanja kako bi se umanjio uticaj na zdravlje ljudi. Cilj ove studije jeste da numeričkim putem ispita kombinovani uticaj gustine čestica i brzine strujanja na njihov transport i deponovanje u prisustvu lomova različitih orijentacija.

Metode: Primenjena je 2D simulacija kretanja čestica pri čemu su uzete u obzir sila otpora i gravitacije na glatkom lomu. Zatim su numerički rezultati čestica dobijeni u tom scenariju, tj. orijentacija loma, gustina čestica i brzina strujanja, uneti u 1D jednačinu advekcije i disperzije sa izrazom za depoziciju.

Rezultati: Model je pokazao da su, kako se ugao orijentacije loma povećavao, obe gustine čestica dovele do povećanja normalizovane koncentracije u nehorizontalnim slučajevima. Ukupan prirast je doveo do uočenog smanjivanja koeficijenata depozicije i povezan je sa povećanjem koeficijenata disperzije. Stoga je efekat bio izraženiji u sličaju gušćih čestica gde je dominiralo gravitaciono okruženje, naročito kod horizontalnih lomova. Čestice manje gustine (1,05 g/cm³) bile su pod jačim uticajem hidrodinamičkih sila, pa su pokazale slabiju ukupnu depoziciju i disperziju kod svih orijentacija loma. Pri tome je povećana brzina strujanja poboljšala mehaničko mešanje i povećala koeficijente disperzije i depozicije.

Zaključak: Nalazi pokazuju jasnu zavisnost od kombinovanih efekata orijentacije loma, gustine čestica i brzine strujanja. Ovi značajni uvidi u mehanizam transporta čestica u sredinama s prisustvom loma imaju primenu u podzemnim tokovima, redukciji kontaminacije i konstruisanju rezervoara.

Reference

Abdel-Salam, A. & Chrysikopoulos, C.V. 1994. Analytical solutions for one-dimensional colloid transport in saturated fractures. Advances in Water Resources 17(5), pp.283-296. Available at: https://doi.org/10.1016/0309-1708(94)90032-9.

Bagalkot, N. & Kumar, G.S. 2018. Colloid Transport in a Single Fracture–Matrix System: Gravity Effects, Influence of Colloid Size and Density. Water, 10(11), art.number:1531. Available at: https://doi.org/10.3390/w10111531.

Baiyu, Z., Hongming, T., Senlin, Y., Gongyang, C., Feng, Z. & Shiyu, X. 2021. Effect of fracture roughness on transport of suspended particles in fracture during drilling. Journal of Petroleum Science and Engineering, 207, art.number:109080. Available at: https://doi.org/10.1016/j.petrol.2021.109080.

Belfort, G. & Nagata, N. 1985. Fluid mechanics and cross-flow filtration: some thoughts. Desalination 53(1-3), pp.57-79. Available at: https://doi.org/10.1016/0011-9164(85)85052-9.

Bennacer, L., Ahfir, N.-D., Alem, A. & Huaqing, W. 2022. Influence of Particles Sizes and Flow Velocity on the Transport of Polydisperse Fine Particles in Saturated Porous Media: Laboratory Experiments. Water, Air, & Soil Pollution, 233, art.number:249. Available at: https://doi.org/10.1007/s11270-022-05732-4.

Bennacer, L., Ahfir, N.-D., Alem, A. & Wang, H. 2017. Coupled Effects of Ionic Strength, Particle Size, and Flow Velocity on Transport and Deposition of Suspended Particles in Saturated Porous Media. Transport in Porous Media, 118, pp.251-269. Available at: https://doi.org/10.1007/s11242-017-0856-6.

Bennacer, L., Ahfir, N.-D., Bouanani, A., Alem, A. & Wang, H. 2013. Suspended Particles Transport and Deposition in Saturated Granular Porous Medium: Particle Size Effects. Transport in Porous Media, 100, pp.377-392. Available at: https://doi.org/10.1007/s11242-013-0220-4.

Bennacer, L., Nassim, K. & Djilali, B. 2023. Laboratory Studies on the Influence of Ionic Strength on Particle Transport Behavior in a Saturated Porous Medium. AEF - Advanced Engineering Forum, 49, pp.91-102. Available at: https://doi.org/10.4028/p-xm3w08.

Bodin, J., Porel, G. & Delay, F. 2003. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth and Planetary Science Letters, 208(3-4), pp.297-304. Available at: https://doi.org/10.1016/S0012-821X(03)00052-9.

Chrysikopoulos, C.V. & James, S.C. 2003. Transport of Neutrally Buoyant and Dense Variably Sized Colloids in a Two-Dimensional Fracture with Anisotropic Aperture. Transport in Porous Media, 51, pp.191-210. Available at: https://doi.org/10.1023/A:1021952226861.

Chrysikopoulos, C.V. & Syngouna, V.I. 2014. Effect of Gravity on Colloid Transport through Water-Saturated Columns Packed with Glass Beads: Modeling and Experiments. Environmental Science & Technology, 48(12), pp.6805-6813. Available at: https://doi.org/10.1021/es501295n.

Ding, Y., Meng, X. & Yang, D. 2021. Numerical simulation of polydisperse dense particles transport in a random-orientated fracture with spatially variable apertures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, art.number:125729. Available at: https://doi.org/10.1016/j.colsurfa.2020.125729.

Guha Roy, D. & Singh, T.N. 2016. Fluid Flow through Rough Rock Fractures: Parametric Study. International Journal of Geomechanics, 16(3). Available at: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000522.

Hawi, H., Ahfir, N.-D., Ouahbi, T., Alem, A. & Wang, H. 2023. Particle Transport in Saturated Fractured Media: Effect of Flow Velocity and Fracture Aperture. ACS ES&T Water, 3(9), pp.3132-3140. Available at: https://doi.org/10.1021/acsestwater.3c00284.

James, S.C. & Chrysikopoulos, C.V. 2003. Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture. Journal of Colloid and Interface Science, 263(1), pp.288-295. Available at: https://doi.org/10.1016/S0021-9797(03)00254-6.

James, S.C. & Chrysikopoulos, C.V. 1999. Transport of polydisperse colloid suspensions in a single fracture. Water Resources Research, 35(3), pp.707-718. Available at: https://doi.org/10.1029/1998WR900059.

Kim, M.-m. & Zydney, A.L. 2004. Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration. Journal of Colloid and Interface Science, 269(2), pp.425-431. Available at: https://doi.org/10.1016/j.jcis.2003.08.004.

Lin, L., Yang, H. & Xu, X. 2022. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Frontiers in Environmental Science, 10, art.number:880246. Available at: https://doi.org/10.3389/fenvs.2022.880246.

Medici, G., West, L.J. & Banwart, S.A. 2019. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport. Journal of Contaminant Hydrology, 222, pp.1-16. Available at: https://doi.org/10.1016/j.jconhyd.2019.02.001.

Mondal, P.K. & Sleep, B.E. 2012. Colloid Transport in Dolomite Rock Fractures: Effects of Fracture Characteristics, Specific Discharge, and Ionic Strength. Environmental Science & Technology, 46(18), pp.9987-9994. Available at: https://doi.org/10.1021/es301721f.

Natarajan, N. & Kumar, G.S. 2010. Thermal transport in a coupled sinusoidal fracture-matrix system. International journal of engineering science and technology, 2(7), pp.2645-2650 [online]. Available at: https://api.semanticscholar.org/CorpusID:136055037 [Accessed: 05 September 2024].

Qu, H., Wang, R., Ao, X., Liu, Z., Lin, H. & Xiao, Q. 2021. Experimental investigation of particle transport and distribution in a vertical nonplanar fracture. Powder Technology, 394, pp.935-950. Available at: https://doi.org/10.1016/j.powtec.2021.09.028.

Spanik, S., Rrokaj, E., Mondal, P.K. & Sleep, B.E. 2021. Favorable and unfavorable attachment of colloids in a discrete sandstone fracture. Journal of Contaminant Hydrology, 243, art.number:103919. Available at: https://doi.org/10.1016/j.jconhyd.2021.103919.

Stoll, M., Huber, F.M., Trumm, M., Enzmann, F., Meinel, D., Wenka, A., Schill, E. & Schäfer, T. 2019. Experimental and numerical investigations on the effect of fracture geometry and fracture aperture distribution on flow and solute transport in natural fractures. Journal of Contaminant Hydrology, 221, pp.82-97. Available at: https://doi.org/10.1016/j.jconhyd.2018.11.008.

Tiab, D. & Donaldson, E.C. 2016. Chapter 8 - Naturally Fractured Reservoirs. In: Tiab, D. & Donaldson, E.C. (Eds.) Petrophysics, Fourth Edition, pp.415-481. Boston: Gulf Professional Publishing. Available at: https://doi.org/10.1016/B978-0-12-803188-9.00008-5.

Wang, X., Yao, J., Gong, L., Sun, H., Yang, Y., Liu, W. & Li, Y. 2020. Numerical study on particle transport and deposition in rough fractures. Oil & Gas Science and Technology - Rev. IFP Energies nouvelles, 75, art.number:23. Available at: https://doi.org/10.2516/ogst/2020015.

Yosri, A., Dickson-Anderson, S., Siam, A. & El-Dakhakhni, W. 2021. Analytical description of colloid behavior in single fractures under irreversible deposition. Journal of Colloid and Interface Science, 589, pp.597-604. Available at: https://doi.org/10.1016/j.jcis.2020.12.089.

Zhang, W., Tang, X., Weisbrod, N. & Guan, Z. 2012. A review of colloid transport in fractured rocks. Journal of Mountain Science, 9, pp.770-787. Available at: https://doi.org/10.1007/s11629-012-2443-1.

Zvikelsky, O. & Weisbrod, N. 2006. Impact of particle size on colloid transport in discrete fractures. Water Resources Research, 42(12), art.number:W12S08. Available at: https://doi.org/10.1029/2006WR004873.

Zvikelsky, O., Weisbrod, N. & Dody, A. 2008. A comparison of clay colloid and artificial microsphere transport in natural discrete fractures. Journal of Colloid and Interface Science, 323(2), pp.286-292. Available at: https://doi.org/10.1016/j.jcis.2008.04.035.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi