Poboljšavanje termomehaničkih svojstava interfejsa kod kompozitnih materijala na bazi polisulfonske polimerne matrice
Sažetak
Introduction/purpose: The extensive engagement of nanocomposite and biocomposite polymers, reinforced with natural fibers as fillers, possessed the capability to not only augment material properties but also actively tackle challenges within green ecosystems. This versatile application underscored the dual benefits of improved material performance and a proactive commitment to environmental sustainability. The purpose of the present study was to investigate the temperature-induced damage to the fiber-matrix interface in various composite materials.
Methods:The study examined carbon/polysulfone, glass/polysulfone, and alfa/polysulfone biocomposite materials. A genetic approach based on the probabilistic formalism of Weibull was employed to model and analyze the interface damage caused by temperature variations.
Results:Notably, the alfa/polysulfone biocomposite emerged as a compelling alternative, showcasing minimal environmental impact and cost-effectiveness. Its fiber-matrix interface behavior closely paralleled that of carbon/polysulfone. The results revealed the remarkable resilience of the carbon/polysulfone composite’s fiber-matrix interface to temperature impacts, distinguishing it from its counterparts.
Conclusions: This nuanced understanding provided valuable insights into the distinct responses of composite materials to temperature variations. It also underscored the advantageous characteristics of the alfa/polysulfone biocomposite, positioning it as a sustainable and efficient option in the field of reinforced polymers for modern applications.
Reference
Al Maadeed, M.A.A. and Ponnamma, D. (2023). Fiber chemistry and technology: Their contributions to shaping Society 5.0. Discover Nano, 18(1). Available at: https://doi.org/10.1186/s11671-023-03888-4.
Alam, M.A., Ilyas, R.A., Sapuan, S.M., et Harussani, M.M. (2021). Application of biocomposites in automotive components: A review. in Biocomposite and Synthetic Composites for Automotive Applications. Elsevier, pp. 1–17. Available at: https://doi.org/10.1016/B978-0-12-820559-4.00001-8.
AL-Oqla, F.M. and Omari, M.A. (2017). Sustainable biocomposites: Challenges, potential and barriers for development. in Green Energy and Technology. Cham: Springer International Publishing, pp. 13–29. Available at: https://doi.org/10.1007/978-3-319-46610-1_2.
Agustiany, E. A., Rasyidur Ridho, M., Rahmi D. N., M., Madyaratri, E. W., Falah, F., Lubis, M. A. R., Solihat, N. N., Syamani, F. A., Karungamye, P., Sohail, A., Nawawi, D. S., Prianto, A. H., Iswanto, A. H., Ghozali, M., Restu, W. K., Juliana, I., Antov, P., Kristak, L., Fatriasari, W., et Fudholi, A.. (2022). Recent developments in lignin modification and its application in lignin‐based green composites: A review. Polymer Composites, 43(8), pp. 4848–4865. Available at: https://doi.org/10.1002/pc.26824.
Akhil, U. V., Radhika, N., Saleh, B., Aravind Krishna, S., Noble, N., et Rajeshkumar, L. (2023). A comprehensive review on plant‐based natural fiber reinforced polymer composites: Fabrication, properties, and applications. Polymer Composites, 44(5), pp. 2598–2633. Available at: https://doi.org/10.1002/pc.27274.
Akter, M., Uddin, M.H. and Anik, H.R. (2023). Plant fiber-reinforced polymer composites: A review on modification, fabrication, properties, and applications. Polymer Bulletin (Berlin, Germany), 81(1), pp. 1–85. Available at: https://doi.org/10.1007/s00289-023-04733-5.
Anne Mertens (2019) Polymères - Propriétés mécaniques. PHYS0904 : Physique des Matériaux, Liège Université.
Arrakhiz, F.Z., El Achaby, M., Malha, M., Bensalah, M.O., Fassi-Fehri, O., Bouhfid, R. and Qaiss, A. (2012). Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Materials in Engineering, 35, pp. 318–322. Available at: https://doi.org/10.1016/j.matdes.2011.09.023.
Asyraf, M. R. M., Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hariz, H. M., Aiman, J. M., Baitaba, D. M., Sanjay, M. R., Ishak, M. R., Norkhairunnisa, M., Sharma, S., Alam, M. A., et Asrofi, M.. (2022). Advanced composite in aerospace applications: Opportunities, challenges, and future perspective. Advanced Composites in Aerospace Engineering Applications, Cham: Springer International Publishing, pp. 471–498. Available at: https://doi.org/10.1007/978-3-030-88192-4_24.
Belhadj, F. A., Belkheir, M., Mokaddem, A., Doumi, B., et Boutaous, A. (2022). Numerical characterization of the humidity effect on the fiber-matrix interface damage of hybrid composite material based on vinyl ester polymer matrix for engineering applications. Emergent Materials, 5(2), pp. 591–600. Available at: https://doi.org/10.1007/s42247-022-00353-3.
Belkheir, M., Alami, M., Mokaddem, A., Doumi, B., et Boutaous, A. (2022). An investigation on the effect of humidity on the mechanical properties of composite materials based on polymethyl methacrylate polymer optical fibers (POFs). Fibers and Polymers, 23(10), pp. 2897–2906. Available at: https://doi.org/10.1007/s12221-022-4164-6.
Belkheir, M., Boutaleb, M., Mokaddem, A., et Doumi, B. (2023). Predicting the effect of coconut natural fibers for improving the performance of biocomposite materials based on the poly (methyl methacrylate)-PMMA polymer for engineering applications. Polymer Bulletin (Berlin, Germany), 80(2), pp. 1975–1996. Available at: https://doi.org/10.1007/s00289-022-04166-6.
Belkheir, M., Rouissat, M., Mokaddem, A., et Boutaous, A. (2023). Effect of carbon nanotube (CNT)-reinforced polymers and biopolymer matrix on interface damage of nanocomposite materials. Emergent Materials, 6(5), pp. 1589–1602. Available at: https://doi.org/10.1007/s42247-023-00547-3.
Benyamina, B., Mokaddem, A., Doumi, B., Belkheir, M. et Elkeurti, M., (2021). Study and modeling of thermomechanical properties of jute and Alfa fiber-reinforced polymer matrix hybrid biocomposite materials. Polymer Bulletin (Berlin, Germany), 78(4), pp. 1771–1795. Available at: https://doi.org/10.1007/s00289-020-03183-7.
Berthelot, J.M. (2005) Matériaux composites: comportement mécanique et analyse des structures. 4e édition. Paris Londres New York: Tec et Doc. ISBN 978-2-7430-0771-3.
Bessadok, A., Marais, S., Gouanvé, F., Colasse, L., Zimmerlin, I. and Roudesli, S. et Métayer, M., (2007). Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Composites Science and Technology, 67(3–4), pp. 685–697. Available at: https://doi.org/10.1016/j.compscitech.2006.04.013.
Bessadok, A., Roudesli, S., Marais, S., Follain, N. et Lebrun, L., (2009). Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing, 40(2), pp. 184–195. Available at: https://doi.org/10.1016/j.compositesa.2008.10.018.
Biagiotti, J., Puglia, D. et Kenny, J.M., (2004). A review on natural fibre-based composites-part I: Structure, processing and properties of vegetable fibres. Journal of Natural Fibers, 1(2), pp.37–68. Available at: https://doi.org/10.1300/j395v01n02_04.
Bourahli, M.E.H. et Osmani, H., (2013). Chemical and mechanical properties of Diss (Ampelodesmos mauritanicus) fibers. Journal of Natural Fibers, 10(3), pp.219–232. Available at: https://doi.org/10.1080/15440478.2012.761115.
Brahim, S.B. and Cheikh, R.B., (2007). Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Composites Science and Technology, 67(1), pp.140–147. Available at: https://doi.org/10.1016/j.compscitech.2005.10.006.
Chichane, A., Boujmal, R. and El Barkany, A., (2023). Bio-composites and bio-hybrid composites reinforced with natural fibers: Review. Materials Today: Proceedings, 72, pp.3471–3479. Available at: https://doi.org/10.1016/j.matpr.2022.08.132.
Chukov, D., Nematulloev, S., Stepashkin, A., Maksimkin, A., Zherebtsov, D. et Tcherdyntsev, V., (2018).Novel carbon fibers reinforced composites based on polysulfone matrix. MATEC Web of Conferences, 242, p.01004. Available at: https://doi.org/10.1051/matecconf/201824201004.
Chukov, D., Nematulloev, S., Torokhov, V., Stepashkin, A., Sherif, G. et Tcherdyntsev, V., (2019). Effect of carbon fiber surface modification on their interfacial interaction with polysulfone. Results in Physics, 15, 102634. Available at: https://doi.org/10.1016/j.rinp.2019.102634.
Chukov, D. I., Nematulloev, S. G., Tсherdyntsev, V. V., Torokhov, V. G., Stepashkin, A. A., Zadorozhnyy, M. Y., Zherebtsov, D. D. et Sherif, G., (2019). Structure and properties of polysulfone filled with modified twill weave carbon fabrics. Polymers, 12(1), 50. Available at: https://doi.org/10.3390/polym12010050.
Das Lala, S., Deoghare, A. B. and Chatterjee, S., (2018). Effect of reinforcements on polymer matrix bio-composites – an overview. Science and Engineering of Composite Materials, 25(6), p.1039–1058. Available at: https://doi.org/10.1515/secm-2017-0281.
de Leon, A. C., Chen, Q., Palaganas, N. B., Palaganas, J. O., Manapat, J. et Advincula, R. C., (2016).High performance polymer nanocomposites for additive manufacturing applications. Reactive et Functional Polymers, 103, pp.141–155. Available at: https://doi.org/10.1016/j.reactfunctpolym.2016.04.010.
Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M. et Garnier, C., (2023).A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, 101271. Available at: https://doi.org/10.1016/j.rineng.2023.101271.
Lebrun, G.A., (1996). Ph.D. Dissertation. Université de Bordeaux.
Ghali, L., Zidi, M. and Roudesli, S., (2006). Physical and mechanical characterization of technical Esparto (Alfa) fibres. Journal of Applied Sciences (Faisalabad, Pakistan), 6(11), pp.2450–2455. Available at: https://doi.org/10.3923/jas.2006.2450.2455.
Hamlaoui, O., (2022). Étude de l'endommagement d'un composite de fibres de verres : application à une opération de rivetage par compression. Ph.D. thesis, CY Cergy Paris Université.
Hamza, S., Saad, H., Charrier, B., Ayed, N. et Charrier-El Bouhtoury, F., (2013). Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products, 49, pp.357–365. Available at: https://doi.org/10.1016/j.indcrop.2013.04.052.
Helaili, S. et Chafra, M., (2014).Anisotropic visco-elastic properties identification of a natural biodegradable ALFA fiber composite. Journal of Composite Materials, 48(13), pp.1645–1658. Available at: https://doi.org/10.1177/0021998313488811.
Lee, L. S. et Jain, R., (2009). The role of FRP composites in a sustainable world. Clean Technologies and Environmental Policy, 11(3), pp.247–249. Available at: https://doi.org/10.1007/s10098-009-0253-0.
Li, Z., Yu, L. and Yan, Z., (2022). Effect of hydrothermal aging on mechanical properties and long-term durability of recycled polysulfone. Journal of Polymers and the Environment, 30(1), pp.92–101. Available at: https://doi.org/10.1007/s10924-021-02182-7.
Lim, Y.-G., Bak, C.-U. and Kim, Y.-D., (2022). Comprehensive experimental and theoretical insights into the performance of polysulfone hollow-fiber membrane modules in biogas purification process. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 433, 134616. Available at: https://doi.org/10.1016/j.cej.2022.134616.
Mann, G. S., Azum, N., Khan, A., Rub, M. A., Hassan, M. I., Fatima, K. et Asiri, A. M., (2023).Green composites based on animal fiber and their applications for a sustainable future. Polymers, 15(3), p.601. Available at: https://doi.org/10.3390/polym15030601.
Manu, T., Nazmi, A. R., Shahri, B., Emerson, N. et Huber, T., (2022). Biocomposites: A review of materials and perception. Materials Today: Communications, 31, 103308. Available at: https://doi.org/10.1016/j.mtcomm.2022.103308.
Marrakchi, Z., Oueslati, H., Belgacem, M. N., Mhenni, F. et Mauret, E., (2012). Biocomposites based on polycaprolactone reinforced with alfa fibre mats. Composites Part A: Applied Science and Manufacturing, 43(4), pp.742–747. Available at: https://doi.org/10.1016/j.compositesa.2011.12.027.
Moghaddam, M. K., Safi, S., Hassanzadeh, S. et Mortazavi, S. M., (2016). Sound absorption characteristics of needle-punched sustainable Typha/polypropylene non-woven. Journal of the Textile Institute, 107(2), pp.145–153. Available at: https://doi.org/10.1080/00405000.2015.1016346.
Mokaddem, A., Alami, M., Doumi, B. et Boutaous, A., (2012). A study by a genetic algorithm for optimizing the arrangement of the fibers on the damage to the fiber–matrix interface of a composite material. Journal of the Textile Institute, 103(12), pp.1376–1382. Available at: https://doi.org/10.1080/00405000.2012.727587.
Mokaddem, A., Alami, M., Doumi, B. et Boutaous, A., (2014). Prediction by a genetic algorithm of the fiber–matrix interface damage for composite material. Part 1. Study of shear damage in two composites T300/914 and PEEK/APC2. Strength of Materials, 46(4), pp.543–547. Available at: https://doi.org/10.1007/s11223-014-9580-4.
Mokaddem, A., Alami, M., Ziani, N., Beldjoudi, N. et Boutaous, A., (2014). Prediction by a genetic algorithm of the fiber–matrix interface damage for composite material. Part 2. Study of shear damage in graphite/epoxy nanocomposites. Strength of Materials, 46(4), pp.548–552. Available at: https://doi.org/10.1007/s11223-014-9581-3.
Mokaddem, A., Doumi, B., Belkheir, M. et Touimi, A., (2020). Comparative analysis on the elastic behavior of composite materials based on plant fibers: Bamboo/Epoxy and coconut/Epoxy. Current Materials Science, 12(2), pp.127–135. Available at: https://doi.org/10.2174/2666145412666191106111630.
Monteiro, S. N., Lopes, F. P. D., Barbosa, A. P., Bevitori, A. B., Silva, I. L. A. D. et Costa, L. L. D., (2011). Natural lignocellulosic fibers as engineering materials—an overview. Metallurgical and Materials Transactions A, 42(10), pp.2963–2974. Available at: https://doi.org/10.1007/s11661-011-0789-6.
Mounir, J., Slah, W. B. M., et Mohamed, B. (2014). Characterization of mechanical extracted alfa fibres. International Journal of Fiber and Textile Research, 4(1), 1-4.
Mujika, F., De Benito, A., Fernández, B., Vázquez, A., Llano-Ponte, R. et Mondragon, I., (2002). Mechanical properties of carbon woven reinforced epoxy matrix composites. A study on the influence of matrix modification with polysulfone. Polymer Composites, 23(3), pp.372–382. Available at: https://doi.org/10.1002/pc.10439.
Nagalakshmaiah, M., Afrin, S., Malladi, R. P., Elkoun, S., Robert, M., Ansari, M. A., Svedberg, A. et Karim, Z., (2019). Biocomposites. In: Green Composites for Automotive Applications. Elsevier, pp.197–215. Available at: https://doi.org/10.1016/B978-0-08-102177-4.00009-4.
Nica, S. L., Asandulesa, M., Stoica, I., Varganici, C.-D., Ursu, E.-L., Gaina, C., Timpu, D. et Albu, R. M., (2023). Tailoring the features of modified polysulfone/carbon filler nanocomposites to enhance physical properties for electronic applications. Materials Today Chemistry, 33, 101711. Available at: https://doi.org/10.1016/j.mtchem.2023.101711.
Paiva, M., Ammar, I., Campos, A., Cheikh, R. et Cunha, A., (2007). Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 67(6), pp. 1132–1138. Available at: https://doi.org/10.1016/j.compscitech.2006.05.019.
Pan, Y. (2022). Mechanical and microstructural characteristics of the fiber-reinforced composite materials. Journal of Minerals and Materials Characterization and Engineering, 10(06), pp. 477–488. Available at: https://doi.org/10.4236/jmmce.2022.106034.
Prakash, K. B., Fageehi, Y. A., Saminathan, R., Manoj Kumar, P., Saravanakumar, S., Subbiah, R., Arulmurugan, B. et Rajkumar, S., (2021). Influence of fiber volume and fiber length on thermal and flexural properties of a hybrid natural polymer composite prepared with banana stem, pineapple leaf, and S‐glass. Advances in Materials Science and Engineering, 2021(1), pp. 1–11. Available at: https://doi.org/10.1155/2021/6329400.
Rajeshkumar, L., Ramesh, M., Bhuvaneswari, V., Balaji, D. et Deepa, C., (2023). Synthesis and thermomechanical properties of bioplastics and biocomposites: a systematic review’, Journal of Materials Chemistry B, 11(15), pp. 3307–3337. Available at: https://doi.org/10.1039/d2tb02221d.
Ramesh, M., Rajeshkumar, L. and Balaji, D., (2021). Influence of process parameters on the properties of additively manufactured fiber-reinforced polymer composite materials: A review. Journal of Materials Engineering and Performance, 30(7), pp. 4792–4807. Available at: https://doi.org/10.1007/s11665-021-05832-y.
Rao, K. M. M., Prasad, A. V. R., Babu, M. N. V. R., Rao, K. M. et Gupta, A. V. S. S. K. S., (2007). Tensile properties of elephant grass fiber reinforced polyester composites. Journal of Materials Science, 42(9), pp. 3266–3272. Available at: https://doi.org/10.1007/s10853-006-0657-8.
Rowell, R. M., (2008). Natural fibres: types and properties. Properties and Performance of Natural-Fibre Composites. Elsevier, pp. 3–66. Available at: https://doi.org/10.1533/9781845694593.1.3.
Saad, H. (2013) Développement de bio-composites à base de fibres végétales et de colles écologiques. PhD thesis. Université de Pau.
Seydibeyoğlu, M. Ö., Dogru, A., Wang, J., Rencheck, M., Han, Y., Wang, L., Seydibeyoğlu, E. A., Zhao, X., Ong, K., Shatkin, J. A., Shams Es-haghi, S., Bhandari, S., Ozcan, S. et Gardner, D. J., (2023). Review on hybrid reinforced polymer matrix composites with nanocellulose, nanomaterials, and other fibers’, Polymers, 15(4), p. 984. Available at: https://doi.org/10.3390/polym15040984.
Sharma, H., Kumar, A., Rana, S., Sahoo, N.G., Jamil, M., Kumar, R., Sharma, S., Li, C., Kumar, A., Eldin, S.M. and Abbas, M. (2023). Critical review on advancements on the fiber-reinforced composites: Role of fiber/matrix modification on the performance of the fibrous composites’, Journal of Materials Research and Technology, 26, pp. 2975–3002. Available at: https://doi.org/10.1016/j.jmrt.2023.08.036.
Sivaraman, K. M., Kellenberger, C., Pané, S., Ergeneman, O., Lühmann, T., Luechinger, N. A., Hall, H., Stark, W. J. et Nelson, B. J., (2012). Porous polysulfone coatings for enhanced drug delivery. Biomedical Microdevices, 14(3), pp. 603–612. Available at: https://doi.org/10.1007/s10544-012-9639-6.
Solodilov, V. I., Korokhin, R. A., Gorbatkina, Y. A. et Kuperman, A. M., (2015). Comparison of fracture energies of epoxy-polysulfone matrices and unidirectional composites based on the. Mechanics of Composite Materials, 51(2), pp. 177–190. Available at: https://doi.org/10.1007/s11029-015-9488-5.
Stepashkin, A. A., Mohammad, H., Makarova, E. D., Odintsova, Y. V., Laptev, A. I. et Tcherdyntsev, V. V., (2023). Deformation behavior of single carbon fibers impregnated with polysulfone by polymer solution method. Polymers, 15(3), p. 570. Available at: https://doi.org/10.3390/polym15030570.
Syduzzaman, M., Sultana Rumi, S., Faiza Fahmi, F., Akter, M. et Begum Dina, R., (2023). Mapping the recent advancements in bast fiber reinforced biocomposites: A review on fiber modifications, mechanical properties, and their applications. Results in Materials, 20, 100448. Available at: https://doi.org/10.1016/j.rinma.2023.100448.
Teoh, S.H., Tang, Z.G. and Hastings, G.W. (2016). Chapter 3 thermoplastic polymers in biomedical applications: Structures, properties and processing. Handbook of Biomaterial Properties. New York, NY: Springer New York, pp. 261–290. https://doi.org/10.1007/978-1-4939-3305-1_19
Weibull, W. (1939). A statistical theory of the strength of materials’, Royal Swedish Academy of Engineering Sciences Proceedings, 151, pp. 1–45.
Yao, S.-S., Jin, F.-L., Rhee, K. Y., Hui, D. et Park, S.-J., (2018). Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Composites Part B: Engineering, 142, pp. 241–250. Available at: https://doi.org/10.1016/j.compositesb.2017.12.007.
Zuccarello, B., Militello, C. and Bongiorno, F. (2023). Environmental aging effects on high-performance biocomposites reinforced by sisal fibers. Polymer Degradation and Stability, 211, 110319. Available at: https://doi.org/10.1016/j.polymdegradstab.2023.110319.
Sva prava zadržana (c) 2025 Khaled Bendahane, Mohamed Alami, Allel Mokaddem, Mohammed Belkheir, Mehdi Rouissat, Bendouma Doumi

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).
