Stabilnost i neurotoksični uticaj organofosfatnih pesticida u vodenim sredinama

Ključne reči: organofosfati, pesticidi, pH stabilnost, toksičnost

Sažetak


Uvod/cilj: Organofosfati danas imaju široku primenu. Koriste se kao pesticidi, lekovi, plastifikatori, usporivači plamena ili hemijski bojni agensi. Njihova akutna toksičnost se pripisuje inhibiciji acetilholinesteraze (AChE), ključnog enzima u prenosu nervnih impulsa kod životinja. Toksični efekti se manifestuju akumulacijom acetilholina u nervnim sinapsama i mogu dovesti do paralize ili smrti. Organotiofosfatni (OF) pesticidi se koriste u velikim količinama. Njihovi oksoanalozi se takođe mogu naći u životnoj sredini usled oksidacije. Kada se akumuliraju u životnoj sredini, ispoljavaju toksične efekte na neciljane organizme.

Metode: Sistematski je analizirana hidroliza OF pesticida u različitim pH uslovima, pri čemu su procenjena njihova neuro- toksična dejstva. Koncentracija ispitivanih OF pesticida tokom razlaganja praćena je tečnom hromatografijom ultra-performanse (UPLC). Istovremeno, primećeno je smanjenje toksičnosti tretiranih uzoraka merenjem aktivnosti enzima AChE.

Rezultati: Organotiofosfatni pesticidi se brzo razlažu u alkalnim vodenim rastvorima, ali su veoma stabilni u kiselim rastvorima. Hlorpirifos se hidrolizuje najbrže, a dimetoat najsporije. Toksičnost rastvora ovih OF pesticida se vremenom smanjuje, što ukazuje na to da se toksičniji proizvodi nisu formirali.

Zaključak: Prikazani rezultati mogu pružiti dobru osnovu za dalje napore u pronalaženju jednostavnih i efikasnih metoda za razgradnju OF pesticida.

Reference

Aćimović, D.D. & Vasić Anićijević, D.D. 2022. Electrooxidative Removal of Organophosphates - A Combined Experimental and Theoretical Approach. In: Organophosphates: Detection, Exposure and Occurrence. Volume 1: Impact on Health and the Natural Environment, pp.215-250 [online]. Available at: https://vinar.vin.bg.ac.rs/handle/123456789/10726?locale-attribute=en [Accessed: 03 October 2024]. ISBN: 1-68507-724-2.

Anićijević, V.J. & Karkalić, R.M. 2022. Organophosphates as Chemical Warfare Agents. In: Lazarević-Pašti, T. (Ed.) Organophosphates: Detection, Exposure and Occurrence. Volume 2: Acute Exposure and Treatments. Hauppauge, NY: Nova Science Publishers, Inc. ISBN: 978-1-68507-734-1.

Anićijević, V.J. & Lazarević-Pašti, T.D. 2020. Chapter 1. Organophosphates: Application, Effects on Human Health and Removal. In: Marquis, F. (Ed.) Organophosphate Pesticides. Hauppauge, NY: Nova Science Publishers, Inc. ISBN: 978-1-53618-307-8.

Anićijević, V.J., Petković, M., Pašti, I.A. & Lazarević-Pašti, T.D. 2022. Decomposition of Dimethoate and Omethoate in Aqueous Solutions — Half-Life, Eco-Neurotoxicity Benchmarking, and Mechanism of Hydrolysis. Water, Air, & Soil Pollution, 233, art.number:390. Available at: https://doi.org/10.1007/s11270-022-05861-w.

Baker, B.P., Benbrook, C.M., Groth III, E. & Lutz Benbrook, K. 2002. Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets. Food Additives & Contaminants, 19(5), pp.427-446. Available at: https://doi.org/10.1080/02652030110113799.

Bootharaju, M.S. & Pradeep, T. 2012. Understanding the Degradation Pathway of the Pesticide, Chlorpyrifos by Noble Metal Nanoparticles. Langmuir, 28(5), pp.2671-2679. Available at: https://doi.org/10.1021/la2050515.

Ellman, G.L., Courtney, K.D., Andres, V., Jr. & Featherstone, R.M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), pp.88-95. Available at: https://doi.org/10.1016/0006-2952(61)90145-9.

Elmorsy, E., Al-Ghafari, A., Al Doghaither, H., Salama, M. & Carter, W.G. 2022. An Investigation of the Neurotoxic Effects of Malathion, Chlorpyrifos, and Paraquat to Different Brain Regions. Brain Sciences, 12(8), art.number:975. Available at: https://doi.org/10.3390/brainsci12080975.

Greaves, A.K. & Letcher, R.J. 2017. A Review of Organophosphate Esters in the Environment from Biological Effects to Distribution and Fate. Bulletin of Environmental Contamination and Toxicology, 98, pp.2-7. Available at: https://doi.org/10.1007/s00128-016-1898-0.

Grue, C.E., Hart, A.D.M. & Mineau, P. 1991. Biological consequences of depressed brain cholinesterase activity in wildlife. In: Mineau, P. (Ed.) Cholinesterase-inhibiting insecticides. Their impact on wildlife and the environment., pp.151-209. Elsevier Science Publishers B.V. ISBN: 0-444-88707-5.

He, J., Song, L., Chen, S., Li, Y., Wei, H., Zhao, D., Gu, K. & Zhang, S. 2015. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey. Food Chemistry, 187, pp.331-7. Available at: https://doi.org/10.1016/j.foodchem.2015.04.069.

Kunstadter, P., Prapamontol, T., Sirirojn, B.-O., Sontirat, A., Tansuhaj, A. & Khamboonruang, C. 2001. Pesticide Exposures among Hmong Farmers in Thailand. International Journal of Occupational and Environmental Health, 7(4), pp.313-325. Available at: https://doi.org/10.1179/107735201800339227

Lazarević-Pašti, T.D., Pašti, I.A., Jokić, B., Babić, B.M. & Vasić, V.M. 2016. Heteroatom-doped mesoporous carbons as efficient adsorbents for removal of dimethoate and omethoate from water. RSC Advances, 6, pp.62128-62139. Available at: https://doi.org/10.1039/C6RA06736K.

Legradi, J.B., Di Paolo, C., Kraak, M.H.S., van Der Geest, H.G., Schymanski, E.L., Williams, A.J., Dingemans, M.M.L., Massei, R., Brack, W., Cousin, X., Begout, M.-L., van der Oost, R., Carion, A., Suarez-Ulloa, V., Silvestre, F., Escher, B. I., Engwall, M., Nilén, G., Keiter, S.H., Pollet, D., Waldmann, P., Kienle, C., Werner, I., Haigis, A.-C., Knapen, D., Vergauwen, L., Spehr, M., Schulz, W., Busch, W., Leuthold, D., Scholz, S., vom Berg, C.M., Basu, N., Murphy, C.A., Lampert, A., Kuckelkorn, J., Grummt, T. & Hollert, H. 2018. An ecotoxicological view on neurotoxicity assessment. Environmental Sciences Europe, 30, art.number:46. Available at: https://doi.org/10.1186/s12302-018-0173-x.

Lockridge, O., Verdier, L. & Schopfer, L.M. 2019. Half-life of chlorpyrifos oxon and other organophosphorus esters in aqueous solution. Chemico-Biological Interactions, 311, art.number:108788. Available at: https://doi.org/10.1016/j.cbi.2019.108788.

London, L., De Grosbois, S., Wesseling, C., Kisting, S., Rother, H.A. & Mergler, D. 2002. Pesticide Usage and Health Consequences for Women in Developing Countries: Out of Sight Out of Mind? International Journal of Occupational and Environmental Health, 8(1), pp.46-59. Available at: https://doi.org/10.1179/oeh.2002.8.1.46.

Peshin, R., Hansra, B.S., Nanda, R., Singh, K., Sharma, R., Garg, L., Bajiya, M.R., Showkat, A., Kumar, R. & Yangsdon, S. 2020. Pesticides Hazardous Hotspots: Empirical Evidences from North India. Environmental Management, 66, pp.899-915. Available at: https://doi.org/10.1007/s00267-020-01317-1.

Rasmussen, J.J., Wiberg-Larsen, P., Baattrup-Pedersen, A., Cedergreen, N., Mcknight, U.S., Kreuger, J., Jacobsen, D., Kristensen, E.A. & Friberg, N. 2015. The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems. Water Research, 84, pp.25-32. Available at: https://doi.org/10.1016/j.watres.2015.07.021.

Richendrfer, H. & Creton, R. 2015. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity. Neurotoxicology, 49, pp.50-58. Available at: https://doi.org/10.1016/j.neuro.2015.05.002.

Silva, V., Mol, H.G.J., Zomer, P., Tienstra, M., Ritsema, C.J. & Geissen, V. 2019. Pesticide residues in European agricultural soils–A hidden reality unfolded. Science of The Total Environment, 653, pp.1532-1545. Available at: https://doi.org/10.1016/j.scitotenv.2018.10.441.

Sparling, D.W. & Fellers, G. 2007. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Environmental Pollution, 147(3), pp.535-539. Available at: https://doi.org/10.1016/j.envpol.2006.10.036.

Ubaid Ur Rahman, H., Asghar, W., Nazir, W., Sandhu, M. A., Ahmed, A. & Khalid, N. 2021. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Science of The Total Environment, 755(2), art.number:142649. Available at: https://doi.org/10.1016/j.scitotenv.2020.142649.

Van Scoy, A., Pennell, A. & Zhang, X. 2016. Environmental Fate and Toxicology of Dimethoate. In: de Voogt, W. (Ed.) Reviews of Environmental Contamination and Toxicology Volume 237, pp.53-70. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-23573-8_3.

Vasić Anićijević, D.D. 2020. Chapter 3. Computational modelling of organophosphorous pesticides–density functional theory calculations. In: Marquis, F. (Ed.) Organophosphate Pesticides. Hauppauge, NY: Nova Science Publishers, Inc. ISBN: 978-1-53618-307-8.

Wang, X., Xing, H., Jiang, Y., Wu, H., Sun, G., Xu, Q. & Xu, S. 2013. Accumulation, histopathological effects and response of biochemical markers in the spleens and head kidneys of common carp exposed to atrazine and chlorpyrifos. Food and Chemical Toxicology, 62, pp.148-58. Available at: https://doi.org/10.1016/j.fct.2013.08.044.

Wolfe, N.L., Zepp, R.G., Gordon, J.A., Baughman, G.L. & Cline, D.M. 1977. Kinetics of chemical degradation of malathion in water. Environmental Science & Technology, 11(1), pp.88-93. Available at: https://doi.org/10.1021/es60124a001.

Objavljeno
2025/02/02
Rubrika
Originalni naučni radovi