Uticaj čvrstoće betona pri pritisku na pouzdanost i momenat plastičnosti spregnutih čelično-betonskih nosača
Sažetak
Uvod/cilj: U ovoj studiji ispitan je uticaj čvrstoće betona pri pritisku na pouzdanost i plastični otporni momenat spregnutih nosača od čelika i betona. Cilj je bio da se proceni uticaj različitih čvrstoća betona na ponašanje konstrukcije, s posebnim naglaskom na plastični otporni momenat koji je kritičan za sigurnost i ispunjavanje zahteva za spregnuti nosač.
Metode: Za modeliranje nelineranog ponašanja betona, Abakus je kreirao trodimenzionalni numerički model koji obuhvata model oštećenja betona usled plastičnosti (Concrete Damage Plasticity –CDP model). Analizirana je pouzdanost, a verovatnoća otkaza je procenjena pomoću simulacija Monte Karlo (MCS), kao i pomoću metoda pouzdanosti prvog (FORM) i drugog reda (SORM). Funkcija graničnog stanja određena je prema kriterijumima Evrokoda 4 uzimajući u obzir čvrstoću betona pri pritisku od 25 do 80 MPA.
Rezultati: Pokazano je da čvrstoća betona pri pritisku znatno utiče na plastični otporni momenat i indeks pouzdanosti spregnutog nosača. Visoka čvrstoća betona poboljšava plastični otporni momenat, dok indeks pouzdanosti varira zavisno od svojstava materijala, geometrije spregnutog preseka, kao i uslova opterećenja.
Zaključak: Čvrstoća betona pri pritisku važan je parametar koji određuje strukturne karakteristike i sigurnost spregnutih nosača od čelika i betona. Zato je pri projektovanju i proceni spregnutih konstrukcija neophodno da se varijabilnost čvrstoće betona uzme u obzir kako bi se osiguralo poštovanje standarda pouzdanosti.
Reference
-ACI Committee 318. 2019. ACI CODE-318-19(22): Building Code Requirements for Structural Concrete and Commentary (Reapproved 2022) [online]. Availble at: https://www.concrete.org/store/productdetail.aspx?ItemID=318U19 [Accessed: 14 November 2024]
Bartlett, F.M., Dexter, R.J., Graeser, M.D., Jelinek, J.J., Schmidt, B.J. & Galambos, T.V. 2003. Updating Standard Shape Material Properties Database for Design and Reliability. Engineering Journal, 40(1), pp.2-14. Available at: https://doi.org/10.62913/engj.v40i1.800.
Benyahi, K., Bouafia, Y., Oudjene, M., Barboura, S. & Kachi, M.S. 2021. Numerical Procedure for the Three-Dimensional Nonlinear Modelling of Composite Steel–Concrete Beams. International Journal of Steel Structures, 21(3), pp.1063-1081. Available at: https://doi.org/10.1007/s13296-021-00490-1.
-CEN (The European Committee for Standardization). 1994. CEN ENV 1994-1-2:1994(MAIN) Eurocode 4: Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design [online]. Available at: https://standards.iteh.ai/catalog/standards/cen/6476197f-10f8-435d-8813-683bbdbd497e/env-1994-1-2-1994 [Accessed: 14 November 2024].
-CEN (The European Committee for Standardization). 2004. CEN EN 1992-1-2:2004(MAIN) Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design [online]. Available at: https://standards.iteh.ai/catalog/standards/cen/597bff7e-4f49-446f-ac9b-69829a09d098/en-1992-1-2-2004 [Accessed: 14 November 2024].
Chaves, I.A., Beck, A.T. & Malite, M. 2010. Reliability-based evaluation of design guidelines for cold-formed steel-concrete composite beams. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 32(5), pp.442-449. Available at: https://doi.org/10.1590/S1678-58782010000500003.
Chiorean, C.G. & Buru, S.M. 2017. Practical nonlinear inelastic analysis method of composite steel-concrete beams with partial composite action. Engineering Structures, 134, pp.74-106. Available at: https://doi.org/10.1016/j.engstruct.2016.12.017.
Daanoune, N., Kernou, N., Fellah, M. & El-Hiti, G.A. 2024. Reliability and mechanical performance of timber-concrete composite beams in the non-linear domain. Građevinar, 76(11), pp.993-1003. Available at: https://doi.org/10.14256/JCE.4055.2024.
-Dassault Systèmes. 2016. Abaqus analysis user's guide. Dassault Systèmes, SIMULIA.
Du, H., Hu, X., Shi, D. & Xue, W. 2021. Flexural Performance of Composite Beams Using High-Strength Steel and High-Strength Concrete. International Journal of Steel Structures, 22, pp.27-41. Available at: https://doi.org/10.1007/s13296-021-00558-y.
Ellingwood, B., MacGregor, J.G., Galambos, T.V. & Cornell, C.A. 1982. Probability Based Load Criteria: Load Factors and Load Combinations. Journal of the Structural Division, 108(5), pp.978-997. Available at: https://doi.org/10.1061/JSDEAG.0005959.
-fib (The International Federation for Structural Concrete). 2013. fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib). Available at: https://doi.org/10.1002/9783433604090.
Grandhi, R.V. & Wang, L. 1999. Structural Reliability Analysis and Optimization: Use of Approximations. NASA/CR-1999-209154. Document ID:19990049421 [online]. Available at: https://ntrs.nasa.gov/citations/19990049421 [Accessed: 14 November 2024].
Guo, Y.-T., Chen, J., Nie, X., Tao, M.-X., Wang, J.-J. & Fan, J.-S. 2020. Investigation of the shear resistances of steel–concrete–steel composite structures with bidirectional webs. Journal of Constructional Steel Research, 164, art.number:105846. Available at: https://doi.org/10.1016/j.jcsr.2019.105846.
Haldar, A. & Mahadevan, S. 1999. Probability, Reliability, and Statistical Methods in Engineering Design. Wiley. ISBN: 978-0-471-33119-3.
Hognestad, E. 1951. A study of combined bending and axial load in reinforced concrete members. University of Illinois Engineering Experiment Station: Bulletin Series No. 399.
Johnson, R.P. 2018. Composite Structures of Steel and Concrete: Beams, Slabs, Columns and Frames for Buildings. Wiley. Available at: https://doi.org/10.1002/9781119401353.
Liang, Q.Q. 2018. Analysis and design of steel and composite structures, 1st Edition. CRC Press. Available at: https://doi.org/10.1201/9781315274843.
Luo, Y., Li, A. & Kang, Z. 2012. Parametric study of bonded steel–concrete composite beams by using finite element analysis. Engineering Structures, 34, pp.40-51. Available at: https://doi.org/10.1016/j.engstruct.2011.08.036.
Lydia, M. & Nassim, K. 2022. Reliability Analysis and Comparative Study of Ordinary Concrete and High Performance Concrete Filled with Steel Tube under Axial Compression. International Journal of Engineering Research in Africa, 61, pp.245-261. Available at: https://doi.org/10.4028/p-9h1zq6.
Mamuda, A., Abubakar, I. & Samson, D. 2018. Reliability-Based Structural Safety Evaluation of Concrete-Steel Composite Beams According to Euro Code 4. Engineering Physics, 2(2), pp.32-40 [online]. Available at: https://www.sciencepublishinggroup.com/article/10.11648/j.ep.20180202.11 [Accessed: 14 November 2024].
Mans, P., Yakel, A.J. & Azizinamini, A. 2001. Full-Scale Testing of Composite Plate Girders Constructed Using 485-MPa High-Performance Steel. Journal of Bridge Engineering, 6(6), pp.598-604. Available at: https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(598).
Morse, L., Khodaei, Z.S. & Aliabadi, M.H. 2017. Multi-Fidelity Modeling-Based Structural Reliability Analysis with the Boundary Element Method. Journal of Multiscale Modelling, 8(03n04), art.number:1740001. Available at: https://doi.org/10.1142/S1756973717400017.
Nie, J., Li, H. & Tang, L. 2009. Experimental study on HSS-concrete composite beams. Journal of Building Structures, 30(02), pp.64-69 [online]. Available at: http://www.jzjgxb.com/EN/Y2009/V30/I02/64 [Accessed: 14 November 2024].
Rackwitz, R. 2001. Reliability analysis—a review and some perspectives. Structural Safety, 23(4), pp.365-395. Available at: https://doi.org/10.1016/S0167-4730(02)00009-7.
Rezaie, F., Farnam, S.M. & Pour Bahar, S. 2022. Numerical Analysis of Reinforced Concrete Beam-Column Joints without Transverse Reinforcement. Numerical Methods in Civil Engineering, 7(2), pp.50-60. Available at: https://doi.org/10.52547/nmce.2022.238.
-The Government of the Hong Kong Special Administrative Region: Buildings Department. 2020. Code of Practice for Structural Use of Concrete 2013 (2020 Edition). The Government of the Hong Kong Special Administrative Region: Buildings Department [online]. Available at: https://www.bd.gov.hk/doc/en/resources/codes-and-references/code-and-design-manuals/CoP_SUC2013e.pdf [Accessed: 14 November 2024].
Youn, S.-G., Bae, D. & Kim, Y.-J. 2011. Ultimate Flexural Strength of Hybrid Composite Girders Using High-Performance Steel of HSB600 at Sagging Bending. In: Composite Construction in Steel and Concrete VI, pp.680-690. Available at: https://doi.org/10.1061/41142(396)56.
Yu, B., Ning, C.-L. & Li, B. 2017. Probabilistic durability assessment of concrete structures in marine environments: Reliability and sensitivity analysis. China Ocean Engineering, 31(1), pp.63-73. Available at: https://doi.org/10.1007/s13344-017-0008-3.
Sva prava zadržana (c) 2025 Nabil Daanoune, Nassim Kernou

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).