Vrsta uparenih preslikavanja tipa Chatterjee: novi rezultati fiksne tačke i svojstva kontinuiteta u metričkim prostorima
Sažetak
Uvod/cilj: U radu je razmatrano uvođenje uparenih preslikavanja tipa Chatterjee koja predstavljaju proširenje tradicionalnih kontraktivnih preslikavanja ovog tipa, a koja deluju na tri tačke umesto na dve, u okviru standardnih metričkih prostora.
Metode: Kontraktivna preslikavanja tipa Chatterjee koriste se u metričkom prostoru na tri tačke, umesto na dve primenom ideje uparenih kontraktivnih preslikavanja.
Rezultati: Razmotren je niz svojstava predmetnih preslikavanja. Ustanovljeno je da uparena preslikavanja tipa Chatterjee čine posebnu klasu u odnosu na tradicionalna preslikavanja ovog tipa koja poseduju najmanje jednu fiksnu tačku u odsustvu periodičnih tačaka prostog perioda 2 unutar kompletnih metričkih prostora. Takođe, pokazano je da dodatni kriterijumi za ova preslikavanja, kao što su neprekidnost i asimptotska regularnost, proširuju opseg rezultata fiksne tačke. Proširujući doprinose Chatterjeea, uspostavljena su dva dodatna rezultata fiksne tačke primenljiva na uparena preslikavanja tipa Chatterjee u metričkim prostorima, čak i u situacijama gde nije potrebna kompletnost.
Zaključak: Uparena preslikavanja tipa Chatterjee koja su najčešće diskontinualna, pokazuju neprekidnost u fiksnim tačkama slično preslikavanjima tipa Kannan i Chatterjee. U odsustvu periodične tačke prostog perioda 2, ova preslikavanja imaju fiksnu tačku unutar kompletnog metričkog prostora.
Reference
Agarwal, P., Jleli, M. & Samet, B. 2018. Fixed Point Theory in Metric Spaces: Recent Advances and Applications. Springer Singapore. Available at: https://doi.org/10.1007/978-981-13-2913-5.
Berinde, V. & Păcurar, M. 2021. Approximating fixed points of enriched Chat- terjea contractions by Krasnoselskij iterative algorithm in Banach spaces. Journal of Fixed Point Theory and Applications, 23, art.number:66. Available at: https://doi.org/10.1007/s11784-021-00904-x.
Bimol, T., Priyobarta, N., Rohen, Y. & Singh, K.A. 2024. Fixed Points for S-Contractions of Type E on S-Metric Space. Nonlinear Functional Analysis and Applications (NFAA), 29(3), pp. 635–648. Available at: https://doi.org/10.22771/nfaa.2024.29.03.02.
Bisht, R.K. & Petrov, E. 2024. A three point extension of Chatterjea’s fixed point theorem with at most two fixed points. arXiv:2403.07906v1. Available at: https://doi.org/10.48550/arXiv.2403.07906.
Chand, D. & Rohen, Y. 2023. Fixed Points of α_s-β_s-ψ-Contractive Mappings in S-Metric Spaces. Nonlinear Functional Analysis and Applications, 28(2), pp. 571–587. Available at: https://doi.org/10.22771/nfaa.2023.28.02.15.
Chand, D. & Rohen, Y. 2024. Paired contractive mappings and fixed point results. AIMS Mathematics, 9(1), pp. 1959–1968. Available at: https://doi.org/10.3934/math.2024097.
Chand, D., Rohen, Y., Saleem, N., Aphane, M. & Razzaque, A. 2024. S-Pata- type contraction: a new approach to fixed-point theory with an application. Journal of Inequalities and Applications, 2024, art.number:59. Available at: https://doi.org/10.1186/s13660-024-03136-y.
Chandok, S. & Postolache, M. 2013. Fixed point theorem for weakly Chatterjea-type cyclic contractions. Fixed Point Theory and Applications, 2013, art.number:28. Available at: https://doi.org/10.1186/1687-1812-2013-28.
Chatterjea, S.K. 1972. Fixed-point theorems. Comptes Rendus de l’Academie bulgare des Sciences, 25(6), pp. 727–730.
Choudhury, B.S., Metiya, N., Kundu, S. & Khatua, D. 2019. Fixed points of multivalued mappings in metric spaces. Surveys in Mathematics and its Applications, 14, pp. 1–16. [online]. Available at: https://www.utgjiu.ro/math/sma/v14/a14_01.html [Accessed: 05 November 2024].
Debnath, P., Mitrović, Z.D. & Cho, S.Y. 2021. Common fixed points of Kannan, Chatterjea and Reich type pairs of self-maps in a complete metric space. São Paulo Journal of Mathematical Sciences, 15, pp. 383–391. Available at: https://doi.org/10.1007/s40863-020-00196-y.
Harjani, J., López, B. & Sadarangani, K. 2011. Fixed point theorems for weakly C-contractive mappings in ordered metric spaces. Computers & Mathematics with Applications, 61(4), pp. 790–796. Available at: https://doi.org/10.1016/j.camwa.2010.12.027.
Jachymski, J. 1994. An iff fixed point criterion for continuous self-mappings on a complete metric space. Aequationes mathematicae, 48(2-3), pp. 163–170. [online]. Available at: https://eudml.org/doc/137605 [Accessed: 05 November 2024].
Kadelburg, Z. & Radenovic, S. 2016. Fixed point theorems under Pata-type conditions in metric spaces. Journal of the Egyptian Mathematical Society, 24(1), pp. 77–82. Available at: https://doi.org/10.1016/j.joems.2014.09.001.
Kannan, R. 1968. Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, pp. 71–76.
Kannan, R. 1969. Some Results on Fixed Points—II. The American Mathematical Monthly, 76(4), pp. 405–408. Available at: https://doi.org/10.1080/00029890.1969.12000228.
Karahan, I. & Isik, I. 2019. Generalizations of Banach, Kannan and Ciric fixed point theorems in bv(s) metric spaces. University Politehnica of Bucharest Scientific Bulletin, Series A - Applied Mathematics and Physics, 81(1), pp. 73–80. [online]. Available at: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full714_520656.pdf [Accessed: 05 November 2024].
Kohsaka, F. & Suzuki, T. 2017. Existence and approximation of fixed points of Chatterjea mappings with Bregman distances. Linear Nonlinear Analysis, 3(1), pp. 73–86. [online]. Available at: http://yokohamapublishers.jp/online2/oplna/vol3/p73.html [Accessed: 05 November 2024].
Malčeski, A., Ibrahimi, A. & Malčeski, R. 2016. Extending Kannan and Chatterjea theorems in 2-Banach spaces by using sequentialy convergent mappings. Matematichki Bilten, 40(1), pp. 29–36. Available at: https://doi.org/10.37560/matbil16100029m.
Pant, R., Rakočević, V., Gopal, D., Pant, A. & Ram, M. 2021. A general fixed point theorem. Filomat, 35(12), pp. 4061–4072. Available at: https://doi.org/10.2298/FIL2112061P.
Petrov, E. 2023. Fixed point theorem for mappings contracting perimeters of triangles. Journal of Fixed Point Theory and Applications, 25(3), art.number:74. Available at: https://doi.org/10.1007/s11784-023-01078-4.
Rhoades, B.E. 1988. Contractive definitions and continuity. In: Brown, R.F. (Ed.) Fixed Point Theory and Its Applications, Vol. 72, MR0956495. Providence, RI, USA: American Mathematical Society. Available at: https://doi.org/10.1090/conm/072.
Savaliya, J., Gopal, D., Moreno, J.M. & Srivastava, S.K. 2024. Solution to the Rhoades’ problem under minimal metric structure. The Journal of Analysis, 32, pp. 1787–1799. Available at: https://doi.org/10.1007/s41478-024-00722-7.
Subrahmanyam, P. 2018. Elementary Fixed Point Theorems. Springer Singapore. Available at: https://doi.org/10.1007/978-981-13-3158-9.
Tassaddiq, A., Kanwal, S., Perveen, S. & Srivastava, R. 2022. Fixed points of single-valued and multi-valued mappings in sb-metric spaces. Journal of Inequalities and Applications, 2022, art.number:85. Available at: https://doi.org/10.1186/s13660-022-02814-z.
Sva prava zadržana (c) 2025 Deep Chand, Yumnan Rohen, Sanasam Surenda Singh, Nikola Fabiano

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).