Komparativna studija modela turbulencije za predviđanje aerodinamičkog otpora kod projektila stabilizovanog rotacijom oko uzdužne ose

Ključne reči: modeli turbulencije, Ansys Fluent, projektili stabilizovani rotacijom oko uzdužne ose, podzvučno strujanje, režim nadzvučnog leta

Sažetak


Uvod/cilj: U ovom istraživanju analiziran je uticaj različitih modela turbulencije na predviđanje aerodinamičkog otpora generičkog projektila stabilizovanog rotacijom oko uzdužne ose. Modeli turbulencije koji su odabrani za istraživanje bili su Spalart-Allmaras-ov model sa jednom jednačinom, kao i modeli sa dve jednačine: Standard k-ε, Realizable k-ε, Standard k-ω i SST k-ω. Za studiju je odabran specijalni snajperski metak M118.

Metode: Urađena je numerička simulacija strujanja oko projektila pomoću RANS jednačina integrisanih u softveru ANSYS Fluent sa različitim modelima turbulencije. Numerička simulacija je izvedena za različite brojeve Maha radi proučavanja uticaja modela turbulencije na predviđanje aerodinamičkog otpora projektila. Rezultati proračuna upoređeni su sa dostupnim eksperimentalnim podacima radi procene modela turbulencije.

Rezultati: Pokazano je da modeli turbulencije imaju značajan uticaj na rezultate numeričke simulacije. Spalart-Allmaras-ov model turbulencije  pokazao se bolji od drugih modela u režimu podzvučnog strujanja, dok su modeli Realizable k-ε i SST k-ω efikasnijiod drugih modela u režimu supersoničnog strujanja.

Zaključak: Računarska dinamika fluida je moćan alat za analizu aerodinamike tela u letu. Strujanje oko tela u letu može se precizno ispitati pomoću odgovarajućeg izbora modela turbulencije. Kod tipova generičkih projektila, sa oživalno-cilindričnim i delimično konusnim zadnjim delom (boat tail),  model Spalart-Allmaras je pogodan za podzvučni režim strujanja, dok su, s druge strane, modeli Standard k-ω, Realizable k-ε i SST k-ω pogodniji za režim nadzvučnog strujanja.

Reference

Bui, X.S., Nguyen, Q. T., Nguyen, H. M. & Doan, V.D. 2024. Theoretical study on the sabot separation process of a sub-caliber projectile fired from rifled guns. Defense and Security Studies, 5, pp.29-45. Available at: https://doi.org/10.37868/dss.v5.id264.

Demir, H., Cimen, M., Yilman, O. & Tekin, E. 2024. Computational Fluid Dynamics Analysis of Drag Reduction in Bullet via Geometric Modifications. Bayburt University Journal of Science, 7(1), pp.47-56. Available at: https://doi.org/10.55117/bufbd.1493857.

Ferfouri, A., Allouche, T., Jerković, D.D., Hristov, N., Vučković, M. & Benmeddah, A. 2023. Prediction of drag aerodynamic coefficient of the 155 mm projectile under axisymmetric flow using different approaches. Journal of the Serbian Society for Computational Mechanics, 17(2), pp.69-86. Available at: https://doi.org/10.24874/jsscm.2023.17.02.06.

Gholap, T.B., Salokhe, R.V., Ghadage, G.V., Mane, S.V. & Sahoo, D. 2022. Aerodynamic analysis of an AK-47 bullet moving at Mach 2.0 in close proximity to the ground. FME Transactions, 50(2), pp.369-381. Available at: https://doi.org/10.5937/fme2201369G.

Hamel, N. & Gagnon, E. 2011. CFD and Parametric Study on a 155 mm Artillery Shell Equipped with a Roll-Decoupled Course Correction Fuze. In: 29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, June 27-30. Available at: https://doi.org/10.2514/6.2011-3027.

Hao, B., Jiang, Q., Xu, C. & Liu, L. 2024. Aerodynamic Characterization of Bullet Heads with Different Arcuate Curves. Journal of Applied Fluid Mechanics, 17(5), pp.1015-1026. Available at: https://doi.org/10.47176/jafm.17.05.2333.

Jang, Y., Huh, J., Lee, N., Lee, S. & Park, Y. 2018. Comparative Study on the Prediction of Aerodynamic Characteristics of Aircraft with Turbulence Models. International Journal of Aeronautical & Space Sciences, 19, pp.13-23. Available at: https://doi.org/10.1007/s42405-018-0022-6.

Jiajan, W., Chue, R.S.M, Nguyen, T. & Yu, S.C.M. 2015. Boattail juncture shaping for spin-stabilized rounds in supersonic flight. Shock Waves, 25, pp.189-204. Available at: https://doi.org/10.1007/s00193-015-0550-y.

Julian, J., Iskandar, W. & Wahyuni, F. 2023. Effect of Mesh Shape and Turbulence Model on Aerodynamic Performance at NACA 4415. Journal of Applied Fluid Mechanics, 16(12), pp.2504-2517. Available at: https://doi.org/10.47176/jafm.16.12.1983.

Launder, B.E. & Spalding, D.B. 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), pp.269-289. Available at: https://doi.org/10.1016/0045-7825(74)90029-2.

Luo, A.A., Xiao, Q.K., Liu, X., Guo, J.C. & Zhang, Y.H. 2024. Numerical Study on Aerodynamic Characteristics of Tail-stabilized Projectile with Asymmetrical Diversion Groove. Journal of Applied Fluid Mechanics, 17(1), pp.116-135. Available at: https://doi.org/10.47176/jafm.17.1.2062.

Matsson, J.E. 2023. An Introduction to Ansys Fluent 2023. Mission, KS, USA: SDC Publications. ISBN: 978-1-63057-648-6.

McCoy, R.L. 1988. The aerodynamic characteristics of 7.62mm match bullets. Defense Technical Information Center: U.S. Army Laboratory Command, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland [online]. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA205633.pdf [Accessed: 07 November 2024].

Menter, F.R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), pp.1598-1605. Available at: https://doi.org/10.2514/3.12149.

Muthukumaran, C.K., Rajesh, G. & Kim, H.D. 2013. Launch Dynamics of Supersonic Projectiles. Journal of Spacecraft and Rockets, 50(6), pp.1150-1162. Available at: https://doi.org/10.2514/1.A32466.

Nguyen, Q.T., Nguyen, H.M. & Son, B.X. 2024. Numerical investigation on the supersonic flow around a saboted bullet. Vojnotehnički glasnik/Military Technical Courier, 72(2), pp.676-694. Available at: https://doi.org/10.5937/vojtehg72-48837.

Sertkaya, A.A., Caliskan, C. & Neseli, S. 2022. Comparison of Real and Simulation Aerodynamic Coefficients for 155 mm Ammunition Using Open-Source Code SU2 Software. Journal of Polytechnic, 25(4), pp.1835-1845. Available at: https://doi.org/10.2339/politeknik.1133519.

Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z. & Zhu, J. 1994. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3), pp.227-238. Available at: https://doi.org/10.1016/0045-7930(94)00032-T.

Silton, S.I. 2002. Navier-Stokes Computations for a Spinning Projectile From Subsonic to Supersonic Speeds. Defense Technical Information Center: Army Research Laboratory, Aberdeen Proving Ground, Maryland [online]. Available at: https://apps.dtic.mil/sti/pdfs/ADA407616.pdf [Accessed: 07 November 2024].

Silton, S.I. 2005. Navier-Stokes Computations for a Spinning Projectile from Subsonic to Supersonic Speeds. Journal of Spacecraft and Rockets, 42(2), pp.223-231. Available at: https://doi.org/10.2514/1.4175.

Silton, S.I. 2011. Navier-Stokes Predictions of Aerodynamic Coefficients and Dynamic Derivatives of a 0.50-cal Projectile. In: 29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, June 27-3. Available at: https://doi.org/10.2514/6.2011-3030.

Somashekar, V. & Immanuel Selwyn Raj, A. 2021. Comparative Study on the Prediction of Aerodynamic Characteristics of Mini - Unmanned Aerial Vehicle with Turbulence Models. International Journal of Aviation, Aeronautics, and Aerospace, 8(1), art.number:7. Available at: https://doi.org/10.15394/ijaaa.2021.1559.

Spalart, P. & Allmaras, S. 1992. A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 06-09. Available at: https://doi.org/10.2514/6.1992-439.

Wilcox, D.C. 1998. Turbulence Modeling for CFD, 2nd Edition. DCW industries La Canada.

Xu, Y., Dong, F. & Zheng, N. 2022. Ballistic and Aerodynamic Characteristics Simulation for Trajectory Correction Projectile. Mechanika, 28(3), pp.230-236. Available at: https://doi.org/10.5755/j02.mech.31431.

Objavljeno
2025/02/02
Rubrika
Originalni naučni radovi