Planiranje ruta vozila radi optimizacije potrošnje goriva
Sažetak
Uvod/cilj: Modeli razvijeni za rutiranje transportnih vozila, sa fokusom na životnu sredinu, pretežno su posvećeni povratnoj logistici ili transportu tereta opasnog po životnu sredinu. U relevantnoj literaturi nekoliko modela razmatra ekološke faktore za usmeravanje vozila uključenih u distribuciju robe široke potrošnje.
Metode: U radu je predstavljen model za planiranje ruta vozila radi optimizacije potrošnje goriva, vodeći računa o vremenskim okvirima u kojima se opsluga može izvršiti i nosivosti vozila. Razvijen je heuristički algoritam čiji je cilj smanjenje potrošnje goriva. Takođe, metaheuristika simulirano kaljenje primenjena je da bi se poboljšala rešenja dobijena predloženom heuristikom.
Rezultati: Prikazani su rezultati heurističkog algoritma za minimizaciju potrošnje goriva i poboljšani rezultati primenom metaheuristike simulirano kaljenje. Svi testovi su sprovedeni na Solomonovim instancama.
Zaključak: Razvijeni pristup za rutiranje vozila obezbeđuje kompromis između transportnih kompanija i ekologije. Rezultati pokazuju da se primenom ovog pristupa mogu istovremeno minimizirati troškovi transportne kompanije i emisija CO2.
Reference
Asghari, M. & Mirzapour Al-E-Hashem, S.M.J. 2021. Green vehicle routing problem: A state-of-the-art review. International Journal of Production Economics, 231, art.number:107899. Available at: https://doi.org/10.1016/j.ijpe.2020.107899.
Braekers, K., Ramaekers, K. & Van Nieuwenhuyse, I. 2016. The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering, 99, pp.300-313. Available at: https://doi.org/10.1016/j.cie.2015.12.007.
Chen, C., Demir, E. & Huang, Y. 2021. An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots. European Journal of Operational Research, 294(3), pp.1164-1180. Available at: https://doi.org/10.1016/j.ejor.2021.02.027.
Ćirković, M. 2018. Ovo niste znali! Kolika je štetnost pogonskih goriva vozila. Ekovest, April 19 [online] Available at: www.eko-vest.com/ovo-niste-znali-kolika-je-stetnost-pogonskih-goriva-vozila/ (in Serbian) [Accessed: 10 January 2025].
Dantzig, G.B. & Ramser, J.H. 1959. The Truck Dispatching Problem. Management science, 6(1), pp.80-91. Available at: https://doi.org/10.1287/mnsc.6.1.80.
Desrochers, M., Lenstra, J., Savelsbergh, M.W.P., Soumis, F. 1988. Vehicle Routing with Time Windows: Optimization and Approximation. In: Golden, B.L. & Assad, A.A. (Eds.) Vehicle Routing: Methods and Studies, pp.65-84. Elsevier Science Publishers B.V. (North-Holland) [online]. Available at: https://ir.cwi.nl/pub/2036/2036D.pdf [Accessed: 10 January 2025].
Herdianti, W., Santoso Gunawan, A.A. & Komsiyah, S. 2021. Distribution cost optimization using pigeon inspired optimization method with reverse learning mechanism. Procedia Computer Science, 179, pp.920-929. Available at: https://doi.org/10.1016/j.procs.2021.01.081.
Huang, S.-H., Huang, Y.-H., Blazquez, C.A. & Chen, C.-Y. 2022. Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm. Advanced Engineering Informatics, 51, art.number:101536. Available at: https://doi.org/10.1016/j.aei.2022.101536.
Kirkpatrick, S., Gelatt Jr, C.D. & Vecchi, M.P. 1983. Optimization by Simulated Annealing. Science, 220(4598), pp.671-680. Available at: https://doi.org/10.1126/science.220.4598.671.
Konstantakopoulos, G.D., Gayialis, S.P. & Kechagias, E.P. 2022. Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Operational Research, 22(3), pp.2033-2062. Available at: https://doi.org/10.1007/s12351-020-00600-7.
Liao, W., Liu, L. & Fu, J. 2019. A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading. International Journal of Environmental Research and Public Health, 16(17), art.number:3120. Available at: https://doi.org/10.3390/ijerph16173120.
Liu, C., Kou, G., Zhou, X., Peng, Y., Sheng, H. & Alsaadi, F.E. 2020. Time-dependent vehicle routing problem with time windows of city logistics with a congestion avoidance approach. Knowledge-Based Systems, 188, art.number:104813. Available at: https://doi.org/10.1016/j.knosys.2019.06.021.
Marinakis, Y. & Migdalas, A. 2007. Annotated bibliography in vehicle routing. Operational Research, 7, pp.27-46. Available at: https://doi.org/10.1007/BF02941184.
Napoli, G., Micari, S., Dispenza, G., Andaloro, L., Antonucci, V. & Polimeni, A. 2021. Freight distribution with electric vehicles: A case study in Sicily. RES, infrastructures and vehicle routing. Transportation Engineering, 3, art.number:100047. Available at: https://doi.org/10.1016/j.treng.2021.100047.
Pan, B., Zhang, Z. & Lim, A. 2021. Multi-trip time-dependent vehicle routing problem with time windows. European Journal of Operational Research, 291(1), pp.218-231. Available at:. https://doi.org/10.1016/j.ejor.2020.09.022.
Ramadhani, B.N.I.F. & Garside, A.K. 2021. Particle swarm optimization algorithm to solve vehicle routing problem with fuel consumption minimization. JOSI Jurnal Optimasi Sistem Industri, 20(1), pp.1-10 [online]. Available at: https://josi.ft.unand.ac.id/index.php/josi/article/view/140 [Accessed: 10 January 2025].
-Sintef. 2008. Solomon bechmark. Sintef, April 18 [online]. Available at: https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/ [Accessed: 10 January 2025].
Song, M.-x., Li, J.-q., Han, Y.-q., Han, Y.-y., Liu, L.-l. & Sun, Q. 2020. Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics. Applied Soft Computing, 95, art.number:106561. Available at: https://doi.org/10.1016/j.asoc.2020.106561.
Teodorović, D. 2007. Transportne mreže, 4th Edition. Belgrade: University of Belgrade, Faculty of Transport and Traffic Engineering (in Serbian). ISBN: 978-86-7395-239-0.
Teodorović, D. & Pavković, G. 1992. A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demand. Transportation Planning and Technology, 16(4), pp.261-273. Available at: https://doi.org/10.1080/03081069208717490.
Tiwari, A. & Chang, P. 2015. A block recombination approach to solve green vehicle routing problem. International Journal of Production Economics, 164, pp.379-387. Available at: https://doi.org/10.1016/j.ijpe.2014.11.003.
Xiao, Y., Zhao, Q., Kaku, I. & Xu, Y. 2012. Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & Operations Research, 39(7), pp.1419-1431. Available at: https://doi.org/10.1016/j.cor.2011.08.013.
Sva prava zadržana (c) 2025 Predrag Grozdanović, Miloš Nikolić, Milica Šelmić

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).