THE EFFECTS OF CADMIUM ON THE TRANSPORT PROCESSES IN PROXIMAL TUBULAR CELLS OF KIDNEYS

  • Teodora Pejovic Institute of Pathophysiology “Dr Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade, Republic of Serbia
  • Sanjin Kovacevic Institute of Pathophysiology “Dr Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade, Republic of Serbia
  • Jelena Nesovic Ostojic Institute of Pathophysiology “Dr Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade, Republic of Serbia
Keywords: cadmium, proximal tubules, transport, nephrotoxicity

Abstract


Cadmium (Cd) is an extremely toxic metal that is widespread in nature. Due to its favorable properties, it was widely used in the industry for the production of alkaline batteries, accumulators, pigments, and colored alloys. However, it has been shown that exposure to low concentrations of cadmium leads to damage to many organs and organ systems, and the use of this metal in industry is reduced, and it is replaced by other, less harmful materials. Today, fossil fuel combustion and cigarette consumption are important sources of cadmium exposure. Numerous studies have examined the toxic effects of cadmium and they highlight the kidneys, liver, gonads as the organs that suffer the most damage. The kidneys, as the main place of cadmium storage in the body, are mostly exposed to its toxic effects. In the proximal tubular cells of the kidney, exposure to cadmium disrupts transport processes. Although ionized cadmium (Cd2+) is thought to be largely responsible for the damage that occurs, the role of the cadmium and metallothionein complex (Cd-MT) cannot be ignored. Peritubular exposure to ionized cadmium indirectly leads to a decrease in the activity of the Na+/L-alanine cotransporter and a decrease in the rate of slow repolarization of the luminal membrane, while the Cd-MT complex leads to both direct and indirect inhibition of this transporter. Also, the Cd-MT complex inhibits Na+/Glucosa cotransporter activity. Exposure to cadmium also leads to a decrease in the endocytic uptake of low molecular weight proteins, which is accompanied by microalbuminuria.

References

1. WHO – World Health Organisation. Available at: www.who.int (cited 18.05.2022.)

2. CDC – Center for Disease Control. Available at: www.cdc.gov (cited 18.05.2022.)

3. Dunglison R, Dunglison R. Medical lexicon. Philadelphia:Henry C. Lea; 1874.

4. ATSDR - Agency for Toxic Substances and Disease Registry. Available at: www.atsdr.cdc.gov (cited 18.05.2022.)

5. Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 2014; 24(4):378-99. doi: 10.1080/09603123.2013.835032

6. Ninkov MN. Intestinalni i sistemski imunski efekti oralnog unosa kadmijuma kod pacova [disertacija]. Beograd:Biološki fakultet Univerziteta u Beogradu; 2016.

7. Pešić BČ. Patofiziologija: mehanizmi poremećaja zdravlja, I deo. 1st ed. Belgrade: Medicinski fakultet Univerziteta, CIBID; 2015.                                                                                                                                                         

8. Vidaković A, Bulat P, Milačić S, Milovanović A, Pavlović M, Torbica N, et al. editors. Osnovi medicine rada. 1st ed. Belgrade: Medicinski fakultet Univerziteta, CIBID; 2014.

9. Ryu DY, Lee SJ, Park DW, Choi BS, Klaassen CD, Park JD. Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett 2004; 152(1):19-25. doi: 10.1016/j.toxlet.2004.03.015

10. Zalups RK, Ahmad S. Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 2003; 186(3):163-88. doi: 10.1016/s0041-008x(02)00021-2

11. Li Y, Huang YS, He B, Liu R, Qu G, Yin Y, et al. Cadmiumbinding proteins in human blood plasma. Ecotoxicol Environ Saf 2020; 188:109896. doi: 10.1016/j.ecoenv.2019.109896

12. Sabolić I, Breljak D, Skarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 2010; 23(5):897-926. doi: 10.1007/s10534-010-9351-z

13. Klaassen CD, Liu J, Diwan BA. Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 2009; 238(3):215-220. doi:10.1016/j.taap.2009.03.026 

14. Jin T, Lu J, Nordberg M. Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 1998; 19(4-5):529-35.

15. Yang H, Shu Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci 2015; 16(1):1484-94. doi: 10.3390/ijms16011484

16. Swiergosz-Kowalewska R. Cadmium distribution and toxicity in tissues of small rodents. Microsc Res Tech 2001;55(3):208-22. doi: 10.1002/jemt.1171

17. Atanacković M et al. editors. Patologija. 3rd ed. Belgrade: Medicinski fakultet Univerziteta, CIBID; 2009.       

18. Bumbaširević V, Lačković V, Milićević N, Mujović S, Obradović M, Pantić S et al, editors. Histologija. 2nd ed. Belgrade: Medicinski fakultet Univerziteta, CIBID; 2007.

19. Kojić Z, Stanojlović O, editors. Fiziologija za studente medicine: odabrana poglavlja, II deo. 2nd ed. Belgrade: Medicinski fakultet Univerziteta, CIBID 2014.

20. Liu J, Liu Y, Michalska AE, Choo KH, Klaassen CD. Metallothionein plays less of a protective role in
cadmium-metallothionein-induced nephrotoxicity than in cadmium chloride-induced hepatotoxicity. J Pharmacol Exp Ther 1996; 276(3):1216-23.

21. Zelikovic I, Chesney RW. Sodium-coupled amino acid transport in renal tubule. Kidney Int 1989; 36(3):351-9. doi: 10.1038/ki.1989.203

22. Čemerikić AD. Elektrofiziologija bubrežnog transporta. In: Mujović MV, Čemerikić AD, editors. Fiziologija bubrega. Beograd: Naučna knjiga, 1987: 15-36.

23. Lang F, Messner G, Rehwald W. Electrophysiology of sodium-coupled transport in proximal renal tubules. Am J Physiol 1986; 250(6Pt2):F953-62. doi: 10.1152/ajprenal.1986.250.6.F953

24. Li S, Yu J, Zhu M, Zhao F, Luan S. Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells. Plant Cell Environ 2012; 35(11):1998-2013. doi: 10.1111/j.1365-3040.2012.02532.x

25. Nešović-Ostojić J, Čemerikić D, Dragović S, Milovanović A, Milovanović J. Low micromolar concentrations of cadmium and mercury ions activate peritubular membrane K+ conductance in proximal tubular cells of frog kidney. Comp Biochem Physiol A Mol Integr Physiol 2008; 149(3):267-74. doi: 10.1016/j.cbpa.2007.12.006

26. Nešović J, Cemerikić D. Characterization of luminal and peritubular membrane K+ selectivity in proximal tubularcells of frog kidney. Ann N Y Acad Sci 2005; 1048:441-4. doi: 10.1196/annals.1342.059

27. Nešovic-Ostojić J, Kovačević S, Spasić S, Lopičić S, Todorović J, Dinčić M, et al. Modulation of luminal L-alanine transport in proximal tubular cells of frog kidney induced by low micromolar Cd2+ concentration. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:38-42. doi: 10.1016/j.cbpc.2018.11.007

28. Tsuruoka S, Sugimoto K, Muto S, Nomiyama K, Fujimura A, Imai M. Acute effect of cadmium-metallothionein on glucose and amino acid transport across the apical membrane of the rabbit proximal tubule perfused in vitro. J Pharmacol Exp Ther 2000; 292(2):769-77.

29. Frömter E, Diamond J. Route of passive ion permeation in epithelia. Nat New Biol 1972; 235(53):9-13. doi: 10.1038/newbio235009a0

30. Fujishiro H, Yamamoto H, Otera N, Oka N, Jinno M, Himeno S. In vitro evaluation of the effects of cadmium on endocytic uptakes of proteins into cultured proximal tubule epithelial cells. Toxics 2020; 8(2):24. doi: 10.3390/toxics8020024

Published
2022/07/09
Section
Review article