INTERAKCIJE PROKAINA SA KLJUČNIM PROTEINIMA U RAZVIĆU SRCA ZEBRICA: IN SILICO ANALIZA
Sažetak
Uvod/Cilj: Prokain je lokalni anestetik iz aminoestarske grupe koji blokira natrijumove voltažno-zavisne kanale. S obzirom na to da može proći kroz placentu u jonizovanom obliku, postavlja se pitanje njegovog uticaja na embrionalni razvoj. Zebrice, koje imaju značajan stepen homologije sa ljudskim genomom, omogućavaju proučavanje razvoja kardiovaskularnog sistema sa pouzdanom ekstrapolacijom na čoveka. Ispitivanje uticaja prokaina na ključne proteine u razvoju srca zebrica pomoću molekularnog dokinga.
Metode: Prvo je izvršen skrining interakcije prokaina i celog ljudskog proteoma koristeći FINDSITEcomb softver. Na osnovu značajnih interakcija sa visokim stepenom preciznosti analize, selektovano je 113 proteina. Pomoću ZFIN baze je određen stepen homologije između selektovanih ljudskih proteina sa zebričinim, tkivna-specifičnost i vremena ekspresije. Devet proteina su ispunili sve kriterijume: kcnh6a, kcnh7, kcnh5a, kcnh2a, psen2, rbfa i zfpl1 i dalje su ispitivani molekularnim dokingom u AutoDock Vina programu.
Rezultati: Većina proteina se eksprimira visokom stopom tokom blastule. Doking rezultati su pokazali da scn1laa protein i prokain imaju najnižu vrednost Gibsove slobodne energije (-6 kCal/mol), dok je za zfp11 protein vrednost bila najviša (-4,4 kCal/mol). Vezivanje prokaina na ispitivane proteine pokazalo je slične aminokiselinske sekvence unutar iste familije proteina.
Zaključak: Prokain ostvaruje interakcije sa proteinima uključenim u razvoj srca zebrica u in silico uslovima. Dalje analize na živim embrionima su potrebne kako bi se dopunili ovi rezultati.
Reference
Tripathi KD. Essentials of medical pharmacology. 7th ed. New Delhi: JP Medical Ltd; 2013.
Satoskar RS, Bhandarkar SD. Pharmacology and pharmacotherapeutics. 25th ed. New Delhi: Elsevier India; 2020.
Usubiaga JE, La Iuppa M, Moya F, Wikinski JA, Velazco R. Passage of procaine hydrochloride and para-aminobenzoic acid across the human placenta. Am J Obstet Gynecol. 1968;100(7):918-23.
Briggs JP. The zebrafish: a new model organism for integrative physiology. Am J Physiol Regul Integr Comp Physiol. 2002;282(1).
Brown DR, Samsa LA, Qian L, Liu J. Advances in the study of heart development and disease using zebrafish. J Cardiovasc Dev Dis. 2016;3(2):13.
Lu F, Langenbacher AD, Chen JN. Transcriptional regulation of heart development in zebrafish. J Cardiovasc Dev Dis. 2016;3(2):14.
Morris GM, Lim-Wilby M. Molecular docking. In: Molecular modeling of proteins. New York: Humana Press; 2006. p. 365-82.
Zhou H, Cao H, Skolnick J. FINDSITEcomb2.0: A new approach for virtual ligand screening of proteins and virtual target screening of biomolecules. J Chem Inf Model. 2018;58(11):2343-54.
Ruzicka L, Bradford Y, Frazer K, Howe DG, Paddock H, Ramachandran S, et al. ZFIN, The zebrafish model organism database: Updates and new directions. Genesis. 2015;53(8):498-509.
Lehrer S, Rheinstein PH. Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. In Vivo. 2020;34(5):3023-6.
Yu R, Chen L, Lan R, Shen R, Li P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int J Antimicrob Agents. 2020;56(2):106012.
Ayuse T, Kurata S, Ayuse T. Successful dental treatments using procaine hydrochloride in a patient afraid of local anesthesia but consenting for allergic testing with lidocaine: A case report. Local Reg Anesth. 2020;13:99.
Ventura B, Lemerle C, Michalodimitrakis K, Serrano L. From in vivo to in silico biology and back. Nature. 2006;443(7111):527-33. DOI: 10.1038/nature05127
Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. Reproduction. 1997;109(1):153-64. DOI: 10.1530/jrf.0.1090153
Waddington CH. The principles of embryology. London: Routledge; 2017.
Turner MD, Singh F, Glickman RS. Dental management of the gravid patient. N Y State Dent J. 2006; 72:22-7.
Cai Y, An SSA, Kim S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin Interv Aging. 2015; 10:1163. DOI: 10.2147/CIA.S82853
Datta PP, Wilson DN, Kawazoe M, Swami NK, Kaminishi T, Sharma MR, et al. Structural aspects of RbfA action during small ribosomal subunit assembly. Mol Cell. 2007;28(3):434-45. DOI: 10.1016/j.molcel.2007.09.019
Gashler A, Sukhatme VP. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol. 1995; 50:191-224. DOI: 10.1016/S0079-6603(08)60880-5
Li D, Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am J Hum Genet. 2006;79(6):1030-9.
Kim NK, Kim JW. A case of next-generation sequencing gene testing: Points to be considered in testing and reporting. Ann Lab Med. 2022;42(2):296-7.
Anderson PA, Greenberg RM. Phylogeny of ion channels: clues to structure and function. Comp Biochem Physiol B Biochem Mol Biol. 2001;129(1):17-28.
Marmier G, Weigt M, Bitbol AF. Phylogenetic correlations can suffice to infer protein partners from sequences. PLoS Comput Biol. 2019;15(10): e1007179.
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496(7446):498-503.
Puillandre N, Holford M. The Terebridae and teretoxins: combining phylogeny and anatomy for concerted discovery of bioactive compounds. BMC Chem Biol. 2010;10(1):1-12.