Preparation and characterization of 3D printed bone scaffold for ibuprofen delivery

  • Marija Jovanović University of Belgrade – Faculty of Technology and Metallurgy
  • Miloš Petrović University of Belgrade – Faculty of Technology and Metallurgy
  • Dušica Stojanović University of Belgrade – Faculty of Technology and Metallurgy
  • Svetlana Ibrić University in Belgrade – Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
  • Petar Uskoković University of Belgrade – Faculty of Technology and Metallurgy
Keywords: semi-solid extrusion 3D printing, gelatin-based bone scaffold, in vitro ibuprofen release and kinetics, microindentation, hardness

Abstract


In this work, a blend of gelatin A (GA) and polyvinylpyrrolidone (PVP K30) was used for semi-solid 3D printing of bone scaffold for ibuprofen (IBU) delivery. The cross-linking of the obtained scaffold was performed with a 1% glutaraldehyde (GTA) solution, followed by lyophilization. The thermal and mechanical properties, as well as drug release profiles, and drug kinetics of prepared scaffolds were investigated.  The cross-linked and lyophilized scaffold has shown good thermal stability, mechanical properties, and prolonged release of IBU following the Fickian diffusion process.

References

1.          Calori IR, Braga G, de Jesus PDCC, Bi H, Tedesco AC. Polymer scaffolds as drug delivery systems. Eur. Polym. J. 2020;129:109621.

2.          Elkasabgy NA, Mahmoud AA. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech. 2019;20:256.

3.          Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes, A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J. Control. Release. 2021;332:367–389.

4.          Reddy RDP, Sharma V. Additive manufacturing in drug delivery applications: A review. Int. J. Pharm. 2020;589:119820.

5.          Jovanović M, Petrović M, Cvijić S, Tomić N, Stojanović D, Ibrić S, Uskoković P. 3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. Pharmaceutics. 2021;13:2143.

6.          Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J. Optimization of semisolid extrusion (pressure-assisted microsyringe)-based 3D printing process for advanced drug delivery application. Annals of 3D Printed Medicine. 2021;2:100008.

7.          Mishra R, Varshney R, Das N, Sircar D, Roy P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur. Polym. J. 2019;119:155–168.

8.          Ahmady A, Samah NHA. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int. J. Pharm. 2021;608:121037.

9.          Kim H, Yang GH, Choi CH, Cho YS, Kim GH. Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations. . Int. J. Biol. Macromol. 2018;120:119–127.

10.       Laha A, Bhutani U, Mitra K, Majumdar S. Fast and Slow Release: Synthesis of Gelatin Casted Film Based Drug Delivery System. Mater. Manuf. Process. 2016;31(2):223-230.

11.       Weiss AV, Fischer T, Iturri J, Benitez R, Toca-Herrera JL, Schneider M. Mechanical properties of gelatin nanoparticles in dependency of crosslinking time and storage. Colloids Surf. B. 2019;175:713–720.

12.       Teodorescu M, Bercea M. Poly(vinylpyrrolidone)–A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym Technol Eng. 2015;54:923–943.

13.       Karavas E, Georgarakis E, Bikiaris D. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur J Pharm Biopharm. 2006;64:115–126.

14.       Sriyanti I, Edikresnha D, Munir MM, Rachmawati H, Khairurrijal K. Electrospun Polyvinylpyrrolidone (PVP) Nanofiber Mats Loaded by Garcinia Mangostana L. Extracts. Mater Sci Forum. 2017;880:11–14.

15.       Ajji Z, Maarouf M, Khattab A, Ghazal H. Synthesis of pH-responsive hydrogel based on PVP grafted with crotonic acid for controlled drug delivery. Radiat Phys Chem. 2020;17:108612.

16.       Catauro M, Bollino F, Papale F, Pacifico S. Modulation of indomethacin release from ZrO2/PCL hybrid multilayers synthesized via sol–gel dip coating. J Drug Deliv Sci Technol. 2015;26:10–16.

17.       Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7:209–227.

18.       Mortera R, Onida B, Fiorilli S, Cauda V, Vitale Brovarone C, Baino F et al. Synthesis and characterization of MCM-41 spheres inside bioactive glass--ceramic scaffold. Chem Eng J. 2008;137:54-61.

19.       Paris JJ, Román J, Manzano M, Cabañas MV, Vallet-Regí M. Tuning dual-drug release from composite scaffolds for bone regeneration. Int. J. Pharm. 2015;486:30-37.

20.       Lima AF, Pegorin GS, Miranda MCR, Cachaneski-Lopes JP, Silva WM, Borges FA, et al. Ibuprofen-loaded biocompatible latex membrane for drug release: Characterization and molecular modeling. J. Appl. Biomater. Funct. Mater. 2021;19:1-13.

21.       Irvine J, Afrose A, Islam N. Formulation and delivery strategies of ibuprofen: challenges and opportunities. Drug Dev. Ind. Pharm. 2018;44:173-183.

22.       Kumar P, Brijnandan S. Dehiya BS, Sindhu A. Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering. Iranian Biomedical Journal. 2019;23(3):190-199.

23.       Zhou J, Fang T, Wang Y, Dong J. The controlled release of vancomycin in gelatin/beta-TCP composite scaffolds. J Biomed Mater Res. 2012;100A:2295-01.

24.       Yang Y, Wang X, Lin X, Xie L, Ivone R, Shen J, Yang G. A tunable extruded 3D printing platform using thermo-sensitive pastes. Int. J. Pharm. 2020;583:119360.

25.       Jovanović M, Tomić N, Cvijić S, Stojanović D, Ibrić S, Uskoković, P. Mucoadhesive Gelatin Buccal Films with Propranolol Hydrochloride: Evaluation of Mechanical, Mucoadhesive, and Biopharmaceutical Properties. Pharmaceutics. 2021;13:273.

26.       Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583. 

27.       Liu S, Zheng Y, Wu Z, Hu J, Liu R. Preparation and characterization of aspirin-loaded polylactic acid/ graphene oxide biomimetic nanofibrous scaffolds. Polymer. 2020;211:123093.

28.       Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12 (3):263–271.

29.       Lin J, Pan D, Sun Y, Ou C, Wang Y, Cao J. The modification of gelatin films: Based on various crosslinking mechanism of glutaraldehyde at acidic and alkaline conditions. Food Sci Nutr. 2019;7:4140–4146.

30.       Li H, Cheng F, Gao S, Wu Z, Dong L, Lin S, et al. Preparation, characterization, antibacterial properties, and hemostatic evaluation of ibuprofen-loaded chitosan/gelatin composite films. J Appl Polym Sci. 2017;134:45441.

31.       Bannach G, Arcaro R, Ferroni DC, Siqueira AB, Treu-Filho O, Ionashiro M, Schnitzler E. Thermoanalytical study of some anti-inflammatory analgesic agents. J Therm Anal Calorim. 2010;102:163–170.

32.       Mukherjee I, Rosolen M. Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim. 2013;114:1161–1166.

33.       Laha A, Sharma CS, Majumdar S. Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release. Mater. Today: Proc. 2016;3:3484–3491.

34.       Liu H, Zhang L, Shi P, Zou Q, Zou Y, Li Y. Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J. Biomed. Mater. Res. Part B. 2010;95(1):36-46.

35.       Kumar P, Dehiya BS, Sindhu A. Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering. Int. Nano Lett. 2017;7(4):285- 290.

36.       Boatenga JS, Auffret AD, Matthews KH, Humphrey MJ, Stevens HNE, Ecclestona GM. Characterization of freeze-dried wafers and solvent evaporated films as potential drug delivery systems to mucosal surfaces. Int. J. Pharm. 2010;389:24–31.

37.       Rahman MM, Pervez S, Nesaa B, Khan MA. Preparation and characterization of porous scaffold composite films by blending chitosan and gelatin solutions for skin tissue engineering. Polym Int. 2013;62:79–86.

38.       Malekjani N, Jafari SM. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr Rev Food Sci Food Saf. 2020;20:3–47.

Published
2022/12/29
Section
Original scientific paper