3D štampa i karakterizacija nosača za dostavu ibuprofena u koštanom tkivu

  • Marija Jovanović Univerzitet u Beogradu – Tehnološko-metalurški fakultet
  • Miloš Petrović Univerzitet u Beogradu – Tehnološko-metalurški fakultet
  • Dušica Stojanović Univerzitet u Beogradu – Tehnološko-metalurški fakultet
  • Svetlana Ibrić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
  • Petar Uskoković Univerzitet u Beogradu – Tehnološko-metalurški fakultet
Ključne reči: 3D štampa ekstruzijom iz paste, nosač lekova na bazi želatina, in vitro profil i kinetika otpuštanja ibuprofena, mikroindentacija, tvrdoća

Sažetak


Nosač za dostavu ibuprofena (IBU) u koštanom tkivu dobijen je metodom 3D štampe ekstruzijom iz paste uz korišćenje smeše polimera želatina A (GA) i polivinilpirolidona (PVP K30). Dobijeni nosač je umrežen sa 1% rastvorom glutaraldehida (GTA), nakon čega je usledio proces liofilizacije uzoraka. Ispitivana su mehanička i termička svojstva, profili i kinetika oslobađanja ibuprofena iz dobijenih nosača. Umrežen i liofilizovan nosač pokazao je dobru termičku stabilnost i mehanička svojstva, kao i produženo oslobađanje IBU-a koje prati kinetiku po Fikovom zakonu difuzije.

Reference

1.          Calori IR, Braga G, de Jesus PDCC, Bi H, Tedesco AC. Polymer scaffolds as drug delivery systems. Eur. Polym. J. 2020;129:109621.

2.          Elkasabgy NA, Mahmoud AA. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech. 2019;20:256.

3.          Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes, A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J. Control. Release. 2021;332:367–389.

4.          Reddy RDP, Sharma V. Additive manufacturing in drug delivery applications: A review. Int. J. Pharm. 2020;589:119820.

5.          Jovanović M, Petrović M, Cvijić S, Tomić N, Stojanović D, Ibrić S, Uskoković P. 3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. Pharmaceutics. 2021;13:2143.

6.          Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J. Optimization of semisolid extrusion (pressure-assisted microsyringe)-based 3D printing process for advanced drug delivery application. Annals of 3D Printed Medicine. 2021;2:100008.

7.          Mishra R, Varshney R, Das N, Sircar D, Roy P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur. Polym. J. 2019;119:155–168.

8.          Ahmady A, Samah NHA. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int. J. Pharm. 2021;608:121037.

9.          Kim H, Yang GH, Choi CH, Cho YS, Kim GH. Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations. . Int. J. Biol. Macromol. 2018;120:119–127.

10.       Laha A, Bhutani U, Mitra K, Majumdar S. Fast and Slow Release: Synthesis of Gelatin Casted Film Based Drug Delivery System. Mater. Manuf. Process. 2016;31(2):223-230.

11.       Weiss AV, Fischer T, Iturri J, Benitez R, Toca-Herrera JL, Schneider M. Mechanical properties of gelatin nanoparticles in dependency of crosslinking time and storage. Colloids Surf. B. 2019;175:713–720.

12.       Teodorescu M, Bercea M. Poly(vinylpyrrolidone)–A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym Technol Eng. 2015;54:923–943.

13.       Karavas E, Georgarakis E, Bikiaris D. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur J Pharm Biopharm. 2006;64:115–126.

14.       Sriyanti I, Edikresnha D, Munir MM, Rachmawati H, Khairurrijal K. Electrospun Polyvinylpyrrolidone (PVP) Nanofiber Mats Loaded by Garcinia Mangostana L. Extracts. Mater Sci Forum. 2017;880:11–14.

15.       Ajji Z, Maarouf M, Khattab A, Ghazal H. Synthesis of pH-responsive hydrogel based on PVP grafted with crotonic acid for controlled drug delivery. Radiat Phys Chem. 2020;17:108612.

16.       Catauro M, Bollino F, Papale F, Pacifico S. Modulation of indomethacin release from ZrO2/PCL hybrid multilayers synthesized via sol–gel dip coating. J Drug Deliv Sci Technol. 2015;26:10–16.

17.       Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7:209–227.

18.       Mortera R, Onida B, Fiorilli S, Cauda V, Vitale Brovarone C, Baino F et al. Synthesis and characterization of MCM-41 spheres inside bioactive glass--ceramic scaffold. Chem Eng J. 2008;137:54-61.

19.       Paris JJ, Román J, Manzano M, Cabañas MV, Vallet-Regí M. Tuning dual-drug release from composite scaffolds for bone regeneration. Int. J. Pharm. 2015;486:30-37.

20.       Lima AF, Pegorin GS, Miranda MCR, Cachaneski-Lopes JP, Silva WM, Borges FA, et al. Ibuprofen-loaded biocompatible latex membrane for drug release: Characterization and molecular modeling. J. Appl. Biomater. Funct. Mater. 2021;19:1-13.

21.       Irvine J, Afrose A, Islam N. Formulation and delivery strategies of ibuprofen: challenges and opportunities. Drug Dev. Ind. Pharm. 2018;44:173-183.

22.       Kumar P, Brijnandan S. Dehiya BS, Sindhu A. Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering. Iranian Biomedical Journal. 2019;23(3):190-199.

23.       Zhou J, Fang T, Wang Y, Dong J. The controlled release of vancomycin in gelatin/beta-TCP composite scaffolds. J Biomed Mater Res. 2012;100A:2295-01.

24.       Yang Y, Wang X, Lin X, Xie L, Ivone R, Shen J, Yang G. A tunable extruded 3D printing platform using thermo-sensitive pastes. Int. J. Pharm. 2020;583:119360.

25.       Jovanović M, Tomić N, Cvijić S, Stojanović D, Ibrić S, Uskoković, P. Mucoadhesive Gelatin Buccal Films with Propranolol Hydrochloride: Evaluation of Mechanical, Mucoadhesive, and Biopharmaceutical Properties. Pharmaceutics. 2021;13:273.

26.       Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583. 

27.       Liu S, Zheng Y, Wu Z, Hu J, Liu R. Preparation and characterization of aspirin-loaded polylactic acid/ graphene oxide biomimetic nanofibrous scaffolds. Polymer. 2020;211:123093.

28.       Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12 (3):263–271.

29.       Lin J, Pan D, Sun Y, Ou C, Wang Y, Cao J. The modification of gelatin films: Based on various crosslinking mechanism of glutaraldehyde at acidic and alkaline conditions. Food Sci Nutr. 2019;7:4140–4146.

30.       Li H, Cheng F, Gao S, Wu Z, Dong L, Lin S, et al. Preparation, characterization, antibacterial properties, and hemostatic evaluation of ibuprofen-loaded chitosan/gelatin composite films. J Appl Polym Sci. 2017;134:45441.

31.       Bannach G, Arcaro R, Ferroni DC, Siqueira AB, Treu-Filho O, Ionashiro M, Schnitzler E. Thermoanalytical study of some anti-inflammatory analgesic agents. J Therm Anal Calorim. 2010;102:163–170.

32.       Mukherjee I, Rosolen M. Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim. 2013;114:1161–1166.

33.       Laha A, Sharma CS, Majumdar S. Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release. Mater. Today: Proc. 2016;3:3484–3491.

34.       Liu H, Zhang L, Shi P, Zou Q, Zou Y, Li Y. Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J. Biomed. Mater. Res. Part B. 2010;95(1):36-46.

35.       Kumar P, Dehiya BS, Sindhu A. Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering. Int. Nano Lett. 2017;7(4):285- 290.

36.       Boatenga JS, Auffret AD, Matthews KH, Humphrey MJ, Stevens HNE, Ecclestona GM. Characterization of freeze-dried wafers and solvent evaporated films as potential drug delivery systems to mucosal surfaces. Int. J. Pharm. 2010;389:24–31.

37.       Rahman MM, Pervez S, Nesaa B, Khan MA. Preparation and characterization of porous scaffold composite films by blending chitosan and gelatin solutions for skin tissue engineering. Polym Int. 2013;62:79–86.

38.       Malekjani N, Jafari SM. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr Rev Food Sci Food Saf. 2020;20:3–47.

Objavljeno
2022/12/29
Rubrika
Originalni naučni rad