GENETIC CHARACTERIZATION OF FARMED AND WILD POPULATIONS OF AFRICAN CATFISH (Clarias gariepinus BURCHELL, 1822) THROUGH RANDOM AMPLIFIED POLYMORPHIC MARKER
Sažetak
Abstract: Genetic characterization of Clarias gariepinus was conducted in this study. Thirty (30) Clarias gariepinus samples were collected, fifteen (15) each from wild and farms in Northeast Nigeria for their genetic relatedness and diversity using RAPD marker. DNA extraction from the blood sample was performed using Gene Jet Genomic DNA Purification Kit. OPB10, OPB12, OPB20, OPE08 and OPE18 are the primers used and amplified using PCR. A total of 402 RAPD bands were amplified by the five primers from the four strains of Clarias gariepinus. Three hundred and six (76.12%) bands were polymorphic while the remaining 86 (21.39%) were found to be monomorphic. Percentage polymorphism obtained by each population (farmed and wild) ranged from 58 (47.3%) to 69 (75.9%) respectively. The polymorphic bands per loci within the populations ranged from 67.9% to 82.0%. The mean numbers of inbreeding coefficient (FIS) was 0.083 in farmed population and 0.053 in wild population. Total gene diversity estimated within farmed and wild populations (Ht) was 0.4522 and 0.4018 respectively. The mean genetic differentiation (FST) values in the populations range between (0.203) in farmed and 0.129 in wild. The Analysis of Molecular Variance (AMOVA) revealed that there is 96% genetic molecular variance within the population which is an indication of 4% genetic variability among the population. Nei's unbiased analysis of genetic identity and genetic distance of four populations were found to be 0.9490 and 0.1038 respectively. The phylogenetic measure has shown that the four (4) strains were divided into two (2) clusters at approximately 0.089 similarity levels. The result indicated significant level of genetic variation and minimal dendrogram separation in Clarias gariepinus in Northeastern Nigeria. In conclusion, this information will be a useful tool for genetic identification and breeding program in Clarias gariepinus as a marker assisted selection to improve the fish growth performance.
Reference
References
Abdelkader, A.M.H., Abdelhamid, Z.G., & Mahrous, F.K. (2013). Genetic diversity among three species of Tilapia in Egypt Detected by Ramdom Amplified Polymorphic DNA Marker. Journal of Applied Biological Science. 7(2):57-64. http://dergipark.gov.tr/download/article-file/415723
Abdul-Muneer, P. M., Gopalakrishnan, A., Musammilu, K. K., Mohindra, V., Lal, K. K., Basheer, V. S., & Lakra, W. S. (2009). Genetic variation and population structure of
endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers, Molecular Biology Reports.36:1779-1791. http://krishi.icar.gov.in:8080/jspui/bitstream/123456789/5216/ /Abdul%20Muneer%20et%20al.%202009%2
Agbebi, O. T., Ilaboya, D. E., & Adebambo, A. O. (2013). Preliminary characterization of genetic strain in Clariid species, Clarias gariepinus and Heterobranchus bidorsalis using microsatellite markers. African journal of Biotechnology. 12(4):364-369. http://www.academicjournals.org/article/article1380724440_Agbebi%20et%20al.pdf
Agnèse, J. F., Teugels, G. G., Galbusera, P., Guyomard, R., & Volckaert, F. (1997). Morphometric and genetic characterization of sympatric populations of Clarias gariepinus and C. anguillaris Senegal. Journal of Fish Biology. 50: 1143-1157.https://onlinelibrary.wiley.com/doi/full/10.1111/j.1095-8649.1997.tb01643.x
Ahmed, M.M.M., Ali, B.A., & El-Zaeem, S.Y. (2004). Application of RAPD markers in fish: part 1-some genera (Tilapia, Sarotherodon and Oreochromis) and species (Oreochromis aurues and Oreochromis niloticus) of Tilapia. International Journal of Biotechnology.6:86-93.
https://www.inderscienceonline.com/doi/abs/10.1504/IJBT.2004.004615?journalCode=ijbt
Ali, B.A. Ahmed, M.M., & Elzeem, S.Y. (2004). Technical note: application of RAPD markers in fish: part ii- Among and within families; Cichlidae (fresh water), Mugilidae (Catadromous), Sparidae and Serranidae (Marine). Internatinal Journal Biotechnilogy.6(4):393-401. http://scholar.google.com/citations?user=UBjB3icAAAAJ&hl=en
Asagbra, M.C., Adebayo, A.S., Ugwumba, O.A., Ugwumba, A.A.A., & Anumudu, C.I. (2014). Genetic characterization of fin fish species from the Warin River at Ubeji, Niger Delta, Nigeria. African Journal Biotechnology. 13(27):2689-2695. https://www.ajol.info/index.php/ajb/article/view/121069
Barasa, J. E., Mdyogolo, S., Abila, R., Grobler, J. P., Skilo, R.A., Bindeman, H., Ndotono, N. M., Chemoiwa, E. J., Dangasuk, O.G., Kaunda-Arara B., & Verheyen, E. (2017). Genetic diversity and population structure of the African catfish, Clarias gariepinus (Burchell, 1822) in Kenya: implication for conservation and aquaculture. Belgian Journal of Zoology 147(2):105-127. https://doi.org/10.24696/bjz.2017.9
Barroso, R. M., Hilsdorf, A.W.S., Moreira, H. L. M., Cabello, P. H., & Traub-Cseko,Y. M.(2005). Genetic diversity of wild and cultured population of Brycon opalinus
(Cuvier, 1819)(Characiforme, Characidae, Bryconiae) using microsatellites.Aquaculture.247:51-65.
https://repositorio.unesp.br/bitstream/handle/11449/153074/penitente_m_dr_bot_par.pdf?sequence=3
Botstein, D., White, R. L., Skolnick, M., & Davis, R.W. (1980). Construction of genetic linkagemap in man using restriction fragment length polymorphisms. American Journal of Human Genetics.32:314-331. https://www.ncbi.nlm.nih.gov/pubmed/6247908
Dada A. A., & Wonah, C. (2003). Production of exotic Clarias gariepinus at varying stocking density in outdoor ponds. Journal of aquatic science. 18(1): 21-24. https://scialert.net/fulltext/?doi=jfas.2014.252.256
FAO (2013): State of the world fisheries and Aquaculture. FAO report available online at http://www.fao.org/3/a-i3720e.pdf.Retrived12/4/2017
Galbusera, P., Volckaert, F. A., Hellemans, B., Ollevier, F. (1996). Isolation and Characterization of microsatellite markers in the African catfish Clarias gariepinus (Burchell, 1822). Molecular Ecology. 5: 703-705. https://www.ncbi.nlm.nih.gov/pubmed/8873472
Garg, R. K., Sairkar, P., Silawat, N., Vijay, N., Batav, N., & Mehrotra, N. N. (2009).
Genetic diversity between two populations of Heteropneustes fossilis (Bloch) using RAPD profile. International Journal of Zoological Research. 5: 171-177. https://scialert.net/fulltextmobile/?doi=ijzr.2009.171.177
Gyan chandra, G., Saxene, A., & Barat, A. (2010). Genetic diversity of two Riverine populations of Eutropiichthys vacha (Hamilton, 1822) using RAPD markers and implications for its conservation. Journal of cell and Molecular Biology. 8(2): 77-85. http://jcmb.halic.edu.tr/pdf/8-2/9.pd
Hallerman, E. M., & Beckmann, J. S. (1988). DNA level polymorphism as tool in fishes science. Canadian Journal of Fisheries and Aquatic Sciences. 45:1075-1087.
http://www.nrcresearchpress.com/doi/abs/10.1139/f88131?journalCode=cjfas#.WyC4
WeY5PIU
Ikpeme, E.V., Udensi, O.U., Ekaluo, U.B., Ekooffreh, M. E., Okolo, C. M., Ekpo, P. B., & Ogbonna, N.C. (2015). Unveiling the Genetic Diversity in Clarias gariepinus (Burchell, 1822) Using Random Amplified Polymorphic DNA (RAPD) Fingerling Technique. Asian Journal of Animal Science. 9(5): 187-197. https://scialert.net/fulltext/?doi=ajas.2015.187.197
Khedkar, G.D., Reddy, A.C.S., Persis, M., Ravinder, K., & Muzumdar, K. (2010). Clarias batrachus (Linneus, 1758) population is lacking genetic diversity in India. Molecular Biology Reports. 37:1355-1362. https://www.ncbi.nlm.nih.gov/pubmed/19360481
Laloei, F., Gilkolaei, S. R., & Taghavi, M. J. (2013). Genetic diversity and differetiation of common carp (Cyprinus carpio) in the southern part of Caspian Sea by using microsatellite marker. Asian Fisheries science. 26:115-127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019227
Li, D., Kang, D., Yin, Q., & Sun, X. (2007).Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations. Journal of Genetics
and Genmics. 34:984-993. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019227/
Miller, L. M., & Kapuscinski, A. R. (1997). Microsatellite DNA markers reveal new levels of genetic variation in northern pike. Transaction of American Fisheries Society. 125:971–977. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.488.944&rep=rep1&type=pdf
Na-Nakorn, U., Taniguchi, N., Nugroho, E., Seki, S., & Kamonrat, W. (1999). Isolation and characterisation of microsatellite loci of Clarias macrocephalus and their application to Genetic Diversity study. Fisheries science. 65(4):520-526. https://www.jstage.jst.go.jp/article/fishsci1994/65/4/65_4_520/_article/-char/ja
Nei, M. (1972). Genetic distance between populatios. American Naturalist. 106:283-293.
http://garfield.library.upenn.edu/classics1979/A1979HV72000001.pdf
Nazia, A. K., Sitti, A., & Zizah, M. N. (2014). Isolation of microsatellites in the bighead catfish, Clarias macrocephalus and cross amplification in selected Clarias species. Molecular Biology Research. 41(3)1207-1213. https://link.springer.com/content/pdf/10.1007/s11033-013-2965-9.pdf
Peakall, R., & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel, Population genetic software for teaching and research. Molecular Ecology Notes. 6:288-295.
https://biology-assets.anu.edu.au/GenAlEx/Welcome.html
Popoola,O. M., Emmanuel, A. F., & Awopetu, J. I. (2014). Genetic variability in cultured and wild populations of Clarias gariepinus (Osteichtlys: Clariidae) using Ramdom
Amplified Polymorphic DNA (RAPD) marker. Croation Journal of Fisheries.72:5-11. https://hrcak.srce.hr/file/177196
Rashid, J., Faozia, M. T., Mostafa A. H., Md., & Samsul, A. (2012). Genetic variation in endangered butter catfish, Ompok bimaculatus (bloch) populations revealed by random amplified polymorphic DNA (RAPD) fingerprinting. International Journal of Biosciences. 2(9) 85-93. https://medium.com/@mdashikurr2/genetic-variation-in-endangered-butter-catfish-ompok-bimaculatus-bloc
Saad, Y. M., Ali, S. F., Hanafi, M. S., Ezza, M. A., & Guerges, A.A. (2009). Genetic Signature of Some Egyptian Clarias gariepinus Populations. Global Veterinaria. 3(6) 503-508. https://www.idosi.org/gv/gv3(6)09/11.pdf
Simonsen, V., Hansen, M. M., Mensberg, K. L. D., Alam, M. D., & Sarder, M. D. (2005). Widespread hybridization among species of Indian major carps in hatcheries, but not in the wild. Journal of Fish Biology. 67:794–808. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0022-1112.2005.00785.x
Soufy, H., Laila, A.M., & Iman, M. K. A. (2009). RAPD-PCR for DNA-Fingerprinting of Egyptian Tilapia. New York Science Journal. 2:1554-0200. http://dergipark.gov.tr/download/article-file/415723
Sultana, S., Akter, S., Hossain, M. A. R., & Alam, M. S. (2010). DNA fingerprinting of the Asian stinging catfish (Heteropneustes fossilis, Bloch) by Random Amplified Polymorphic DNA markers. International Journal of Biotechnology Applications. 2(2)5-10. http://scholar.unand.ac.id/25043/9/DAFTAR%20PUSTAKA.pd
Tamura, K. J. Dudley, M. E., & Kumar, S. (2007). Mega4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 24:1596-1599. https://pdfs.semanticscholar.org/2d6f/573c36c5e2153b65859fb080523fc4d842d0.pdf
Usman, B. A., Agbebi, O. T., Bankole, M. O., Oguntade, O. R., & Popoola, M. O. (2013). Molecular characterization of two cichlids populations (Tilapia guineensis and Sarotherodon melantheron)from different water bodies in Lagos State, Nigeria. International Journal for Biotechnology and Molecular Biology Research. 4(5)71-77. http://www.academicjournals.org/journal/IJBMBR/article-abstract/C04570A40377
Wachirachairan, A., Rungsin, W., Srisapoome, P., & Na-Nakorn, U. (2009). Crossing of African Catfish, Clarias gariepinus (Burchell, 1822), Strains Based on strain selection using genetic diversity data. Aquaculture. 290(1-2):53-60. https://doi.org/10.1016/j.aquaculture.2009.01.036
Wang, M. L., Barkley, N. A., & Jenkins, T. M. (2009). Microsatellite marker in plants and insects.Part1: Application of Biotecnology. Genes, Genomes and Genomics.
(1)54-67. https://pubag.nal.usda.gov/catalog/44058
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18(22)6531-6535. http://www.biomedsearch.com/attachments/00/01/97/91/1979162/nar00206-0065.pdf