Uticaj egzogenih regulatora rasta na nivo ekspresije sadržaja kanabinoida, glavne selekcijske osobine kanabisa i ispoljavanje epigenetskih efekata

  • Olena Piliarska Institute of Irrigated Agriculture NAAS
Ključne reči: konoplja, fitohormoni, vitamini, kanabinoidi, produktivnost, pol, epigenetski efekti

Sažetak


Konoplja (Cannabis sativa L.) je osetljiva vrsta na uticaj egzogenih regulatora rasta kako u tretmanu vegetativnih biljaka tako i u kulturi in vitro. NOC, MOK, 2,4-D, KIN, BAP, GK3, askorbinska i nikotinska kiselina egzogenog porekla u ispitivanim koncentracijama i dozama izazvali su promene u kanabinoidima u biljkama sorte IUSO 31. Askorbinska kiselina, auksini i GK3 značajno su smanjili sadržaj kanabinoida, a kiselina i citokinina - povećana. Kao rezultat trostrukog izlaganja nikotinskoj kiselini i BAP-u, nastavile su se promene u potomstvu, sa epigenetskim efektima, odnosno nasleđivanjem i varijabilnosti koja nije povezana sa naslednim promenama u DNK nukleotidnim sekvencama. Dodatna metoda za povećanje nivoa nepsihotropnih kanabinoida može biti tretman vegetativnih biljaka citokininom BAP (koncentracija 40 mg/l, potrošnja 30 ml/m2, faza rasta i razvoja VVSN 51), koji za razliku od visokog koncentracije nikotinske kiseline, značajno povećan CBD i u manjoj meri – THC. Od oplemenjivačkih osobina stabljike značajnu promenu u pravcu porasta pretrpeli su ukupna dužina stabljike, masa i sadržaj vlakana, produktivnost semena i pol. Široke su mogućnosti za upotrebu fitohormona egzogenog porekla u regulaciji akumulacije kanabinoida, morfogenezi biljaka kanabisa i produktivnosti. Različiti genotipovi konoplje mogu imati različite odgovore na regulatore rasta biljaka i koncentracije, koje treba odrediti od slučaja do slučaja.

Reference

REFERENCES:



  1. Ačko, D. K., Flajšman, M., & Trdan, S. (2019). Apical bud removal increased seed yield in hemp (Cannabis sativa L.). Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 69(4), 317–323. doi: 1080/09064710.2019.1568540

  2. Brockman, H. G., Brennan, R. F., & van Burgel, A. (2020). The impact of phytohormone concentration in Moringa oleifera leaf extract on wheat yield and components of yield. J. Plant Nutr., 43(3), 396–406. doi: 1080/01904167.2019.1683195

  3. Burgel, L., Hartung, J., Schibano, D., & Graeff-Hönninger, S. (2020). Impact of different phytohormones on morphology, yield and cannabinoid content of Cannabis sativa Plants, 9(6). 725. doi: 10.3390/plants9060725

  4. Chaohua, C., Gonggu, Z., Lining, Z., Chunshenget, G., Qing, T., Jianhua, C., Xinbo, G., Dingxiang, P., & Jianguang, S. (2016). A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Industrial Crops and Products, 83, 61–65. doi: 10.1016/j.indcrop.2015.12.035

  5. Galán-Ávila, A., García-Fortea, E., Prohens, J., & Herraiz, F. J. (2020). Development of a direct in vitro plant regeneration protocol from Cannabis sativa L. seedling explants: developmental morphology of shoot regeneration and ploidy level of regenerated plants. Front. Plant Sci., 11. 645. doi: 10.3389/fpls.2020.00645

  6. Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, А., & Ullah, А. (2021). Drought tolerance strategies in plants: a mechanistic approach. J Plant Growth Regul, 40(3), 926–944. doi: 10.1007/s00344-020-10174-5

  7. Kumlay, A. M. (2014). Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions. Biomed Res., 2014. 439259. doi: 10.1155/2014/439259

  8. Lata, H., Chandra, S., Techen, N., Khan, І. А., & ElSohly, М. А. (2016). In vitro mass propagation of Cannabis sativa L.: a protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(1), 18–26. doi: 10.1016/j.jarmap.2015.12.001

  9. Maletsky, S. I., Roik, N. V., & Dragavtsev, V. A. (2013). Third variability, the inheritance types and seed reproduction in plants. Agricultural Biology, 5, 3–29. doi: 10.15389/agrobiology.2013.5.3rus [in Russian]

  10. Mendel, P., Schiavo-Capri, E., Lalge, A. B., Vyhnanek, T., Kalousek, P., Trojan, V., Havel, L., Filippi, A., & Braidot, E. (2020). Evaluation of selected characteristics in industrial hemp after phytohormonal treatment. Pak. J. Agri. Sci., 57(1), 1–7. doi: 10.21162/PAKJAS/20.7586

  11. Mishchenko, S., Mokher, J., Laiko, I., Burbulis, N., Kyrychenko, H., & Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa): codification and description according to the BBCH scale. Žemės ūkio mokslai, 24(2), 31–36. doi: 10.6001/zemesukiomokslai.v24i2.3496

  12. Mishchenko, S. V. (2018). Epigenetic determined sex change of the hemp unisexual hybrids under the influence of photoperiod. Plant Breeding and Seed Productivity, 113, 102–110. doi: 30835/2413-7510.2018.134364

  13. Neumann, K. H., Kumar, A., & Imani, J. (2020). Phytohormones and growth regulators. In Plant Cell and Tissue Culture – A Tool in Biotechnology (pp. 309–320). Cham: Springer. doi: 10.1007/978-3-030-49098-0_11

  14. Rogach, V. V., & Rogach T. I. (2015). Influence of synthetic growth stimulators on morphological and physiological characteristics and biological productivity of potato culture. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol., 23(2), 221–224. doi: 10.15421/011532

  15. Rogach, V. V., Poprotska, I. V., & Kuryata, V. G. (2016). Effect of gibberellin and retardants on morphogenesis, photosynthetic apparatus and productivity of the potato. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol., 24(2), 416–420. doi: 10.15421/011656

  16. Sauer, M.,Robert, S., & Kleine-Vehn, J. (2013). Auxin: simply complicated. Journal of Experimental Botany, 64(9), 2565–2577. doi: 10.1093/jxb/ert139

  17. Smýkalová, I., Vrbová, M., Cvečková, M., Plačková, L., Žukauskaitė, А., Zatloukal, M., Hrdlička, J., Plíhalová, L., Doležal, K., & Griga, M. (2019). The effects of novel synthetic cytokinin derivatives and endogenous cytokinins on the in vitro growth responses of hemp (Cannabis sativa L.) explants. Plant Cell Tiss Organ Cult, 139(2), 381–394. doi: 10.1007/s11240-019-01693-5

  18. Sudan, P., Sudan, S., Behl, T., Sharma, M., & Misri, R. W. (2014). A critical insight into the intricate role of plant hormones in growth and development phase. PharmaTutor, 2(4), 87–89.

  19. Thacker, X., Thomas, K., Fuller, M., Smith, S. & DuBois, J. (2018). Determination of optimal hormone and mineral salts levels in tissue culture media for callus induction and growth of industrial hemp (Cannabis sativa L.). Agricultural Sciences, 9(10), 1250-1268. doi: 4236/as.2018.910088

  20. Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U., Ali, E., & Fahad, S. (2018). Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res, 25(33), 33103–33118. doi: 10.1007/s11356-018-3364-5

  21. Wróbel, T., Dreger, M., Wielgus, K., & Słomski, R. (2018). The application of plant in vitro cultures in cannabinoid production. Biotechnol Lett, 40(3), 445–454. doi: 10.1007/s10529-017-2492-1

Objavljeno
2022/10/05
Rubrika
Originalni naučni članak