Influence of Exogenous Growth Regulators on the Level of Cannabinoid Content Expression, Main Selection Traits of Hemp and Manifestation of Epigenetic Effects

  • Olena Piliarska Institute of Irrigated Agriculture NAAS
Keywords: hemp, phytohormones, vitamins, cannabinoids, productivity, sex, epigenetic effects.

Abstract


Hemp (Cannabis sativa L.) is a sensitive species to the influence of exogenous growth regulators both in the treatment of vegetative plants and in vitro culture. NAA, IAA, 2,4-D, KIN, BAP, GA3, ascorbic and nicotinic acids of exogenous origin in the studied concentrations and doses caused a change in the content of cannabinoids in plants of variety USO 31. Ascorbic acid, auxins and GA3 significantly reduced the content of cannabinoids, whereas nicotinic acid and cytokinins increased it. As a result of triple exposure to nicotinic acid and BAP, changes in the descendants persisted, with epigenetic effects, i.e. inheritance and variability, not associated with hereditary changes in DNA nucleotide sequences. An additional method to increase the level of non-psychotropic cannabinoids may be treatment of vegetative plants with cytokinin BAP (concentration 40 mg/l, consumption rate 30 ml/m2, phase of growth and development BBCH 51), which, in contrast to high concentrations of nicotinic acid, significantly increased the content of CBD and, to a lesser extent, THC. Such selection traits of the stem as its total length, mass and fiber content, seed productivity and sex significantly increased. There is a wide range of possibilities for phytohormones of exogenous activity in regulating cannabinoid accumulation, morphogenesis of hemp plants and their productivity. Different hemp genotypes may have different responses to plant growth regulators and concentrations, which should be established in each case.

References

REFERENCES:



  1. Ačko, D. K., Flajšman, M., & Trdan, S. (2019). Apical bud removal increased seed yield in hemp (Cannabis sativa L.). Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 69(4), 317–323. doi: 1080/09064710.2019.1568540

  2. Brockman, H. G., Brennan, R. F., & van Burgel, A. (2020). The impact of phytohormone concentration in Moringa oleifera leaf extract on wheat yield and components of yield. J. Plant Nutr., 43(3), 396–406. doi: 1080/01904167.2019.1683195

  3. Burgel, L., Hartung, J., Schibano, D., & Graeff-Hönninger, S. (2020). Impact of different phytohormones on morphology, yield and cannabinoid content of Cannabis sativa Plants, 9(6). 725. doi: 10.3390/plants9060725

  4. Chaohua, C., Gonggu, Z., Lining, Z., Chunshenget, G., Qing, T., Jianhua, C., Xinbo, G., Dingxiang, P., & Jianguang, S. (2016). A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Industrial Crops and Products, 83, 61–65. doi: 10.1016/j.indcrop.2015.12.035

  5. Galán-Ávila, A., García-Fortea, E., Prohens, J., & Herraiz, F. J. (2020). Development of a direct in vitro plant regeneration protocol from Cannabis sativa L. seedling explants: developmental morphology of shoot regeneration and ploidy level of regenerated plants. Front. Plant Sci., 11. 645. doi: 10.3389/fpls.2020.00645

  6. Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, А., & Ullah, А. (2021). Drought tolerance strategies in plants: a mechanistic approach. J Plant Growth Regul, 40(3), 926–944. doi: 10.1007/s00344-020-10174-5

  7. Kumlay, A. M. (2014). Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions. Biomed Res., 2014. 439259. doi: 10.1155/2014/439259

  8. Lata, H., Chandra, S., Techen, N., Khan, І. А., & ElSohly, М. А. (2016). In vitro mass propagation of Cannabis sativa L.: a protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(1), 18–26. doi: 10.1016/j.jarmap.2015.12.001

  9. Maletsky, S. I., Roik, N. V., & Dragavtsev, V. A. (2013). Third variability, the inheritance types and seed reproduction in plants. Agricultural Biology, 5, 3–29. doi: 10.15389/agrobiology.2013.5.3rus [in Russian]

  10. Mendel, P., Schiavo-Capri, E., Lalge, A. B., Vyhnanek, T., Kalousek, P., Trojan, V., Havel, L., Filippi, A., & Braidot, E. (2020). Evaluation of selected characteristics in industrial hemp after phytohormonal treatment. Pak. J. Agri. Sci., 57(1), 1–7. doi: 10.21162/PAKJAS/20.7586

  11. Mishchenko, S., Mokher, J., Laiko, I., Burbulis, N., Kyrychenko, H., & Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa): codification and description according to the BBCH scale. Žemės ūkio mokslai, 24(2), 31–36. doi: 10.6001/zemesukiomokslai.v24i2.3496

  12. Mishchenko, S. V. (2018). Epigenetic determined sex change of the hemp unisexual hybrids under the influence of photoperiod. Plant Breeding and Seed Productivity, 113, 102–110. doi: 30835/2413-7510.2018.134364

  13. Neumann, K. H., Kumar, A., & Imani, J. (2020). Phytohormones and growth regulators. In Plant Cell and Tissue Culture – A Tool in Biotechnology (pp. 309–320). Cham: Springer. doi: 10.1007/978-3-030-49098-0_11

  14. Rogach, V. V., & Rogach T. I. (2015). Influence of synthetic growth stimulators on morphological and physiological characteristics and biological productivity of potato culture. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol., 23(2), 221–224. doi: 10.15421/011532

  15. Rogach, V. V., Poprotska, I. V., & Kuryata, V. G. (2016). Effect of gibberellin and retardants on morphogenesis, photosynthetic apparatus and productivity of the potato. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol., 24(2), 416–420. doi: 10.15421/011656

  16. Sauer, M.,Robert, S., & Kleine-Vehn, J. (2013). Auxin: simply complicated. Journal of Experimental Botany, 64(9), 2565–2577. doi: 10.1093/jxb/ert139

  17. Smýkalová, I., Vrbová, M., Cvečková, M., Plačková, L., Žukauskaitė, А., Zatloukal, M., Hrdlička, J., Plíhalová, L., Doležal, K., & Griga, M. (2019). The effects of novel synthetic cytokinin derivatives and endogenous cytokinins on the in vitro growth responses of hemp (Cannabis sativa L.) explants. Plant Cell Tiss Organ Cult, 139(2), 381–394. doi: 10.1007/s11240-019-01693-5

  18. Sudan, P., Sudan, S., Behl, T., Sharma, M., & Misri, R. W. (2014). A critical insight into the intricate role of plant hormones in growth and development phase. PharmaTutor, 2(4), 87–89.

  19. Thacker, X., Thomas, K., Fuller, M., Smith, S. & DuBois, J. (2018). Determination of optimal hormone and mineral salts levels in tissue culture media for callus induction and growth of industrial hemp (Cannabis sativa L.). Agricultural Sciences, 9(10), 1250-1268. doi: 4236/as.2018.910088

  20. Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U., Ali, E., & Fahad, S. (2018). Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res, 25(33), 33103–33118. doi: 10.1007/s11356-018-3364-5

  21. Wróbel, T., Dreger, M., Wielgus, K., & Słomski, R. (2018). The application of plant in vitro cultures in cannabinoid production. Biotechnol Lett, 40(3), 445–454. doi: 10.1007/s10529-017-2492-1

Published
2022/10/05
Section
Original Scientific Paper