PRIMENA RAMANOVE SPEKTROSKOPIJE ZA KARAKTERIZACIJU AUTOHTONIH SORTI TREŠNJE (PRUNUS AVIUM L.) POREKLOM SA BALKANA

  • Mina Volić Inovacioni centar Tehnološko-metalurškog fakulteta u Beogradu, Karnegijeva 4, 11000 Beograd
  • Nataša Obradović Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, 11000 Beograd
  • Ana Milivojević Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, 11000 Beograd
  • Nebojša Milošević Institut za voćarstvo, Kralja Petra I 9, 32102 Čačak, Srbija
  • Ilinka Pećinar Poljoprivredni fakultet, Univerzitet u Beogradu, Nemanjina 6, 11080 Zemun, Beograd
Ključne reči: Trešnja, vibracioni režimi, multivarijantna analiza, HPLC analiza, antocijanini, fenolna jedinjenja, ugljeni hidrati.

Sažetak


Procena kvaliteta voća i povrća je od ključne važnosti za njihovu dalju obradu, predviđanje roka trajanja i formiranje cene. Većina tehnika koje se primenjuju za analizu kvaliteta ovih namirnica su invazivne. Međutim, sve veće interesovanje se javlja za neinvazivnim tehnikama za ocenjivanje kvaliteta voća, koje dobijaju na značaju zbog svoje jednostavnije primene i mehanizma rada. Ova studija po prvi put demonstrira primenljivost Ramanove spektroskopije za merenje spektralnih karakteristika različitih sorti trešnje (Prunus avium L.) ('Đuti', 'Canetova', 'Ohridska crna' i 'Dolga šiška'). U kombinaciji sa analizom glavnih komponenti (engl. Principal component analysis, PCA), Ramanova spektroskopija je korišćena za procenu uzoraka nutritivno sličnog sastava, kao što su proučavane sorte trešnje. Šećeri (glukoza, saharoza i fruktoza), antocijanini, fenolne kiseline i flavonoidi, kvantifikovani poređenjem sa referentnim standardima, korišćenjem tečne hromatografije visokih performansi (HPLC), pokazali su Ramanove pikove (na 337, 399, 455, 538, 617, 1327 i 1600 cm⁻¹, redom) različitih intenziteta, što ukazuje na razlike između sorti. 'Ohridska crna', u poređenju sa drugim sortama, sadrži najveću količinu nutritivnih i bioaktivnih jedinjenja. Nađena je korelacija između Ramanovih pikova i rezultata sadržaja šećera i fenola dobijenih hemijskom analizom. Ostvareni rezultati su ukazali na primenljivost hemometrijskog modelovanja povezanog sa Ramanovom spektroskopijom za brzu autentifikaciju trešnje.

Reference

Agarwal, U.P. (2006). Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (picea mariana). Planta, 224, 1141–1153.
Ballistreri, G., Continella, A., Gentile, A., Amenta, M., Fabroni, S., & Rapisarda, P. (2013). Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chemistry, 140, 630-638.
Baranski, R., Baranska, M. & Schulz, H. (2005). Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta, 222, 448–457.
Boyaci, H.I., Temiz, H.T., Geniş, H.E., Soykut, E.A., Yazgan, N.N., Güven, B., & Şeker, F.C.D. (2015). Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Advances, 5, 56606–56624.
Camerlingo, C., Portaccio, M., Tatè, R., Lepore, M., & Delfino, I. (2017). Fructose and pectin detection in fruit-based food products by surface-enhanced Raman spectroscopy. Sensors, 17, 839.
Clodoveo, M.L., Crupi, P., Muraglia, M., Naeem, M.Y., Tardugno, R., Limongelli, F., Corbo, F. (2023). The main phenolic compounds responsible for the antioxidant capacity of sweet cherry (Prunus avium L.) pulp. LWT, 185, 115085.
da Silva, C.E., Vandenabeele, P., Edwards, H.G., & de Oliveira LF. (2008). NIR-FT-Raman spectroscopic analytical characterization of the fruits, seeds, and phytotherapeutic oils from rosehips. Analytical and Bioanalytical Chemistry, 392, 1489–1496.
Edwards, H. G., Farwell, D. W., & Webster, D. (1997). FT Raman microscopy of untreated natural plant fibres. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53, 2383–2392.
Eravuchira, P.J., El-Abassy, R.M., Deshpande, S., Matei, M.F., Mishra, S., Tandon, P., Kuhnert, N., Materny, A. (2012). Raman spectroscopic characterization of different regioisomers of monoacyl and diacyl chlorogenic acid. Vibrational Spectroscopy, 61, 10-16.
Faienza, M.F., Corbo, F., Carocci, A., Catalano, A., Clodoveo, M.L., Grano, M., Wang, D.Q.H., D'Amato, G., Muraglia, M., Franchini, C., Brunetti, G., & Portincasa, P. (2020). Novel insights in health-promoting properties of sweet cherries. Journal of Functional Foods, 69, 103945.
Farber, C., Lee, Sanchez. L., Rizevsky, S., Ermolenkov, A., McCutchen, B., Cason, J., Simpson, C., Burow, M., & Kurouski, D. (2020). Raman spectroscopy enables non-invasive identification of peanut genotypes and value-added traits. Scientific Reports, 10, 7730.
Ferretti, G., Bacchetti, T., Belleggia, A., & Neri, D. (2010). Cherry Antioxidants: From Farm to Table. Molecules, 15, 6993–7005.
Filaferro, M., Codeluppi, A., Brighenti, V., Cimurri, F., González-Paramás, A.M., Santos-Buelga, C., Bertelli, D., Pellati, F., & Vitale, G. (2022). Disclosing the antioxidant and neuroprotective activity of an anthocyanin-rich extract from sweet cherry (Prunus avium L.) using in vitro and in vivo models. Antioxidants, 11, 211.
Flores, K., Sanchez, M., Perez-Marin, D., Lopez, M., Guerrero, J., & Garrido-Varo, A. (2008). Prediction of total soluble solid content in intact and cut melons and watermelons using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 16, 91–98.
González-Gómez, D., Lozano, M., Fernández-León, M.F., Bernalte, M.J., Ayuso, M.C., Rodríguez, A.B. (2010). Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). Journal of Food Composition and Analysis, 23, 533-539.
Hammer, Ø.; Harper, D.A.; Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4, 9.
Jacob, R.A., Spinozzi, G.M., Simon, V.A., Kelley, D.S., Prior, R.L., Hess-Pierce, B., Kader, A.A. (2003). Consumption of cherries lowers plasma urate in healthy women. The Journal of Nutrition, 133, 1826-1829.
Kang, S.-Y., Seeram, N.P., Nair, M.G., Bourquin, L.D. (2003). Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Letters, 194, 13-19.
Kang, L., Wang, K., Li, X. & Zou, B. (2016). High pressure structural investigation of benzoic acid: Raman spectroscopy and x-ray diffraction. The Journal of Physical Chemistry C, 120, 14758–14766.
Kent, K., Charlton, K. E., Jenner, A., & Roodenrys, S. (2016). Acute reduction in blood pressure following consumption of anthocyanin-rich cherry juice may be dose-interval dependent: A pilot cross-over study. International Journal of Food Sciences and Nutrition, 67, 47–52.
Krysa, M., Szymańska-Chargot, M., & Zdunek, A. (2022). FT-IR and FT-Raman fingerprints of flavonoids – A review. Food Chemistry, 393, 133430.
Maiti, N., Kapoor, S., & Tulsi, M. (2013). Surface-enhanced Raman Scattering (SERS) Spectroscopy For Trace Level Detection Of Chlorogenic Acid. Advanced Materials Letters, 4, 502-506.
Menges, F. Spectragryph Optical Spectroscopy Software, Version 1.2.14. Available online: http://www.effemm2.de/spectragryph/(accessed on 27 October 2022).
Nakajima, S., Kuroki, S., Ikehata, A. (2023). Selective detection of starch in banana fruit with Raman spectroscopy. Food Chemistry, 401, 134166.
Nekvapil, F., Brezestean, I., Barchewitz, D., Glamuzina, B., Chiş, V., & Pinzaru, S.C. (2018). Citrus fruits freshness assessment using Raman spectroscopy. Food Chemistry, 242, 560-567.
Neng, J., Zhang, Q., & Sun, P. (2020). Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosensors and Bioelectronics, 167, 112480.
Petersen, M., Yu, Z., & Lu, X. (2021). Application of Raman Spectroscopic Methods in Food Safety: A Review. Biosensors, 11, 187.
Pompeu, D.R., Larondelle, Y., Rogez, H., Abbas, O., Fernández Pierna, J.A. & Baeten V. (2018). Characterization and discrimination of phenolic compounds using Fourier transform Raman spectroscopy and chemometric tools. Biotechnology, Agronomy and Society and Environment, 22, 13-28.
Schmitz-Eiberger, M., & Blanke, M. (2012). Bioactive components in forced sweet cherry fruit (Prunus avium L.), antioxidative capacity and allergenic potential as dependent on cultivation under cover. LWT-Journal of Food Science and Technology, 46, 388–392.
Schulz, H., Baranska, M. & Baranski, R. (2005). Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 77, 212–221.
Schulz, H., Baranska, M. (2007). Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43, 13–25.
Seeram, N.P., Momin, R.A., Nair, M.G., & Bourquin, L.D. (2001). Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine, 8, 362-369,
Seidler-Lozykowska, K., Baranska, M., Baranski, R., & Krol, D. (2010). Raman analysis of caraway (Carum carvi L.) single fruits. Evaluation of essential oil content and its composition. Journal of Agricultural and Food Chemistry, 58, 5271-5275.
Średnicka-Tober, D., Ponder, A., Hallmann, E., Głowacka, A., Rozpara, E. (2019). The profile and content of polyphenols and carotenoids in local and commercial sweet cherry fruits (Prunus avium L.) and their antioxidant activity in vitro. Antioxidants, 8, 534.
Synytsya, A., Čopiokova, J., Matĕjka, P., & Machovič, V. (2003). Fourier transform Raman and infrared spectroscopy of pectins. Carbohydrate Polymers, 54, 97–106.
Usenik, V., Fabčič, J., & Štampar, F. (2008). Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chemistry, 107, 185–192.
Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M.Z., Majzner, K., Kochan, K., & Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates: a review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317–335.
Xu, S., Huang, X., & Lu, H. (2023). Advancements and Applications of Raman Spectroscopy in Rapid Quality and Safety Detection of Fruits and Vegetables. Horticulturae, 9, 843,
Xu, Y., Zhong, P., Jiang, A., Shen, X., Li, X., Xu, Z., Shen, Y., Sun, Y., & Lei, H. (2020). Raman spectroscopy coupled with chemometrics for food authentication: A review. Trends in Analytical Chemistry, 131, 116017.
Yıgıt, D., Baydas, E., & Güleryüz, M. (2009). Elemental analysis of various cherry fruits by wavelength dispersive X-ray fluorescence spectrometry. Asian Journal of Chemistry, 21, 2935–2942.
Yu, M.M.L., Schulze, H.G., Jetter, R., Blades, M.W. & Turner R.F.B. Raman microspectroscopic analysis of triterpenoids found in plant cuticles. Applied Spectroscopy, 61, 32–37.
Zaffino, C., Russo, B., & Bruni, S. (2015). Surface-enhanced Raman scattering (SERS) study of anthocyanidins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 41-47.
Zeise, I., Heiner, Z., Holz, S., Joester, M., Büttner, C., & Kneipp, J. (2018). Raman imaging of plant cell walls in sections of Cucumis sativus. Plants 7, 7.
Zhu, N., Wu, D., & Chen, K. (2018). Label-free visualization of fruit lignification: Raman molecular imaging of loquat lignified cells. Plant Methods, 14, 1-16.
Objavljeno
2024/12/26
Rubrika
Originalni naučni članak