KLASIFIKACIJA ZEMLJIŠTA U MIKRODEPRESIJAMA REČNOG OSTRVA (VELIKO RATNO OSTRVO, SRBIJA)
Klasifikacija zemljišta ostrvskih mikrodepresija
Sažetak
Veliko ratno ostrvo je nastalo na ušću reke Save u Dunav, veoma je izloženo podzemnim i poplavnim vodama i stoga pogodno za istraživanje zemljišnog hidromorfizma. Cilj ovog rada je detaljna klasifikuja zemljišta iz dve donekle različite mikrodepresije na Velikom ratnom ostrvu, prema lokalnim i međunarodnim (WRB 2022 i USDA Soil Taxonomy), sistemima klasifikacije, sa posebnim osvrtom na faktore pedogeneze i svojstva zemljišta koja su uticala na klasifikaciju. Zemljište zatvorene mikrodepresije je euglej, hipoglej, mineralni, karbonatni ili Calcaric Oxygleyic Gleysol (Loamic, Humic). Zemljište mikrodepresije otvorene prema Dunavu je humoglej, karbonatni, blago alkalani, ilovasti ili Calcaric Oxygleyic Mollic Tidalic Gleysol (Loamic, Fluvi-Loaminovic). Oba zemljišta su Mollisols, Aquolls, Endoaquolls, Typic Endoaquolls. Pozemne vode (visok nivo i amplitude) uzorkovane topografijum, glavni su factor formiranja zemljšta, što je dovelo do procesa oglejavanja i redoksimorfnih osobina (redoximorphic features) koje su uticale na klasifikaciju zemljište na najvišem nivou lokalnog (red, klasa i tip) i WRB sistema (referntne grupe zemljišta – RSG i oksiglejni (oxygleyic) osnovni kvalifikator) kao i na drugom nivou (suborder) USDA Soil Taxonomy klasifikacije zemljišta u obe mikrodepresije. Pored toga, produženi periodi poplava doveli su do osnovnih (molični (Mollic) i tidalični (Titalic)) i dodatnih (fluvi-novični (Fluvi-Novic)) kvalifikatora zemljište u otvorenoj mikrodepresiji. Aluvijani sediment kao matični supstrat prouzrokovali su kalkarični (Calcaric) osnovni i loamični (Loamic) dopunski kvalifikator za oba zemljišta. Lokalna klasifikacija odražava većinu faktora pedogeneze i svojstava zemljišta kao i dve međunarodne klasifikacije. Da bi se izbegla moguće nedoumice i povećala tačnost, potrebne su kvantitativne granice na nivou tipa i nižih klasifikacionih jedinica.
Reference
Bouma, J. (1983). Hydrology and soil genesis of soils with aquic moisture regimes. In: L.P. Wilding, N.E. Smeck & G.F. Hall (Eds.), Pedogenesis and Soil Taxonomy. Volume I: Concepts and Interactions. (pp. 253–281) Amsterdam: Elsevier.
Collins, N.B. (2005). Wetlands: The Basics and Some More. Free State Province: Free State Department of Tourism, Environmental and Economic Affairs.
Đorđević, A., & Radmanović, S. (2018). Pedologija. Beograd: Univerzitet u Beogradu, Poljoprivredni fakultet.
Đorđević, B., Dašić, T., & Plavšić J. (2020). Uticaj klimatskih promena na vodoprivredu Srbije i mere koje treba preduzimati u cilju zaštite od negativnih uticaja. Vodoprivreda, 52, 39–68.
Filpovski, G. (2001). Soils of the Republic of Macedonia. Skopje: Macedonian Academy of Sciences and Arts.
Gröngröft, A., Kutzbach, L., & Akkul Y. (2020). The Intertidal Flat Soil (Wattboden). Soil of the Year. Retrieved June 24, 2024, from https://boden-des-jahres.de
Husnjak, S. (2014). Sistematika tala Hrvatske. Zagreb: Hrvatska Sveučilišna Naklada.
IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. Internationalsoil classification system for naming soils and creating legends for soil maps. Rome: World Soil Resources Reports, FAO.
IUSS Working Group WRB. (2022). World Reference Base for Soil Resources. Volume IV: International soil classification system for naming soils and creating legends for soil maps. Vienna: International Union of Soil Sciences (IUSS).
JKP „Zelenilo-Beograd“ (2018–2027). Osnova gazdovanja šumama za gazdinsku jedinicu „Veloko ratno ostrvo“. Beograd: Javno komunalno preduzeće „Zelenilo-Beograd“.
Kawalko, D., Jezierski, P., & Kabala, C. (2021). Morphology and Physicochemical Properties of Alluvial Soils in Riparian Forests after River Regulation. Forests, 12 (3), 329.
Łabaz, B., & Kabala, C., (2016). Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena, 139, 117–126.
Łachacz, A., & Nitkiewicz, S. (2021). Classification of soils developed from bottom lake deposits in north-eastern Poland. Soil Science Annual, 72 (2), 140643.
Lin, Y.S, Lin, Y.W., Wang, Y., Chen, Y.G., Hsu, M.L., Chiang, S.H., & Chen, Z.S. (2007). Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan–Hukou Tableland, Northwestern Taiwan. Geomorphology, 90, 36–54.
Lin, Y.S., Chen, Y. G., Chenc, Z. S., & Hsieh, M. L. (2005) Soil morphological variations on the Taoyuan Terrace, Northwestern Taiwan: Roles of topography and groundwater. Geomorphology 69, 138–151.
Marković, B., Veselinović, M., Obradović, Z., Anđelković J., Atin, B., & Kostadinov, D. (1984). Basic Geological Map - Sheet number L34–113. Geological information systems of Serbia (GeolISS). Retrieved June 12, 2024, from, https://geoliss.mre.gov.rs/prez/OGK/RasterSrbija/OGKWebOrig/listovi.php?karta=Beograd
Moraru, S.S., Ene, A., & Badila, A., (2020). Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania. Sustainability, 12, 9174.
Okusami, T.A. (1985). Hydromorphism - Its definition and correlation between three major classification systems with reference to West Africa. Ife Journal of Agriculture, 7, 26–34.
Pollmann, T., Junge, B., & Giani, L. (2018). Landscapes and soils of North Sea Barrier Islands: A comparative analysis of the old west and young east of Spiekeroog Island (Germany). Erdkunde, 72 (4), 273–286.
Prokof'eva, T.V., Varava, O.A., Sedov, S.N., & Kuznetsova, A.M., (2010). Morphological diagnostics of pedogenesis on the anthropogenically transformed floodplains in Moscow. European Journal of Soil Science, 43 (4), 368–379.
Rabenhorst, M., Wassel, B., Stolt M., & Lindbo D. (2017). Is there a case be made for a "Wet" soil order? Retrieved July 18, 2024, from file:///C:/Users/ml034/Downloads/Phoenix%20poster%202016%20Wet%20Soil%20Order%2005%20(2).pdf
Repe, B., (2020). Classifi cation of soils in Slovenia. Soil Science Annual, 71(2), 158–164.
Resulović, H., Čustović, H., & Čengić, I. (2008). Sistematika tla/zemljišta. Sarajevo: Poljoprivredno prehrambeni fakultet Univerziteta u Sarajevu.
RHSS. (2024). Meterology - Climatology - 30 years averages. Republic Hydrometerological Service of Serbia. Retrieved July 12, 2024, from http://www.hidmet.gov.rs/ciril/meteorologija/stanica_sr.php?moss_id=13274
Rubinić, V., Ilijanić, N., Magdić, I., Bensa, A., Husnjak, S., & Krklec, K. (2020). Plasticity, Mineralogy, and WRB Classification of Some Typical Clay Soils along the Two Major Rivers in Croatia. Eurasian Soil Science, 5 (7), 922–940.
Soil Survey Staff. (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Volume II: Agriculture Handbook. Washington: United States Department of Agriculture, Natural Resources Conservation Service.
Škorić, A., Filipovski, G., & Ćirić, M. (1985). Klasifikacija zemljišta Jugoslavije. Sarajevo: Akademija nauka i umjetnosti Bosne i Herecegovine.
Tošović., S. (2002). Ekološki atlas Beograda. Gradski zavod za javno zdravlje Beograd. Retrieved June 20, 2024, from https://www.zdravlje.org.rs/publikacije/ekoatlas/ekoatlas.pdf
Trajković, S. (2021). Upravljanje vodama i adaptacija na klimatske promene. GAF, Univerzitet u Nišu. Retrieved July 05, 2024, from http://gf94.gaf.ni.ac.rs/pluginfile.php/1384/mod_resource/content/1/02%20Upravljanje%20vodama%20i%20adaptacija%20na%20klimatske%20promene.pdf
Yakovenko, V., Kunakh, O., Tutova, H., & Zhukov, O. (2023). Diversity of soils in the Dnipro River valley (based on the example of the Dnipro-Orilsky Nature Reserve). Folia Oecologica, 50 (2), 119–133.
Zhang, Z.,, Zimmermann, N.E., Kaplan, J.O., & Poulter, B. (2016). Modeling spatiotemporal dynamics of global wetlands: Comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences, 13 (5), 1387–1408.
Zhangurova, E.V., Koroleva, M.A., Dubrovskiya, Y.A., & Shamrikova, E.V. (2023). Soils of the Ray-Iz Massif, Polar Urals. Eurasian Soil Science, 56, 405–418.
