CLASSIFICATION OF SOILS FROM RIVER ISLAND MICRODEPRESSIONS (GREAT WAR ISLAND, SERBIA)

SOIL CLASSIFICATION OF ISLAND MICRODEPRESSIONS

Keywords: WRB, Soil Taxonomy, Euglej, Humoglej, Gleysols, Typic Endoaquolls

Abstract


Great War Island is a river island formed at the confluence of the Sava and Danube rivers, heavily exposed to groundwater and flooding and is therefore suitable as a case study for the investigation of soil hydromorphism. The aim of this study was to comprehensively classify the soils in two somewhat different microdepression on Great War Island according to the local and international WRB 2022 and USDA Soil Taxonomy systems, with particular attention to the soil-forming factors and properties that influenced soils classification. The soil of the closed microdepression is Eugley, Hipogley, Mineral, Calcareous or Calcaric Oxygleyic Gleysol (Loamic, Humic). The soil of the microdepression open to the Danube is Humogley, Calcareous, Weakly alkalized, Loamy or Calcaric Oxygleyic Mollic Tidalic Gleysol (Loamic, Fluvi-Loaminovic). The high level and amplitude of the groundwater and the longer duration of the flood caused by the topography, as well as the characteristics of the alluvial sediments, are the main soil-forming factors that have influenced the classification of the soils. The local soil classification reflects most of the soil-forming factors/characteristics as the two international soil classifications. To avoid possible misunderstandings and increase accuracy, quantitative thresholds for soil type and lower levels are required.

Author Biography

Svjetlana B. Radmanović, University of Belgrade - Faculty of Agriculture

Department of Pedology and geology

 

References

Bandyopadhyay, S., Ray, P., Ramachandran, S., Jena, R.K., Singh S.K., & Ray S.K. (2017). Pedogenesis of Some Hydromorphic Soils of Upper Brahmaputra Valley Region, Assam, India. Clay Research, 36 (2), 77–89.
Bouma, J. (1983). Hydrology and soil genesis of soils with aquic moisture regimes. In: L.P. Wilding, N.E. Smeck & G.F. Hall (Eds.), Pedogenesis and Soil Taxonomy. Volume I: Concepts and Interactions. (pp. 253–281) Amsterdam: Elsevier.
Collins, N.B. (2005). Wetlands: The Basics and Some More. Free State Province: Free State Department of Tourism, Environmental and Economic Affairs.
Đorđević, A., & Radmanović, S. (2018). Pedologija. Beograd: Univerzitet u Beogradu, Poljoprivredni fakultet.
Đorđević, B., Dašić, T., & Plavšić J. (2020). Uticaj klimatskih promena na vodoprivredu Srbije i mere koje treba preduzimati u cilju zaštite od negativnih uticaja. Vodoprivreda, 52, 39–68.
Filpovski, G. (2001). Soils of the Republic of Macedonia. Skopje: Macedonian Academy of Sciences and Arts.
Gröngröft, A., Kutzbach, L., & Akkul Y. (2020). The Intertidal Flat Soil (Wattboden). Soil of the Year. Retrieved June 24, 2024, from https://boden-des-jahres.de
Husnjak, S. (2014). Sistematika tala Hrvatske. Zagreb: Hrvatska Sveučilišna Naklada.
IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. Internationalsoil classification system for naming soils and creating legends for soil maps. Rome: World Soil Resources Reports, FAO.
IUSS Working Group WRB. (2022). World Reference Base for Soil Resources. Volume IV: International soil classification system for naming soils and creating legends for soil maps. Vienna: International Union of Soil Sciences (IUSS).
JKP „Zelenilo-Beograd“ (2018–2027). Osnova gazdovanja šumama za gazdinsku jedinicu „Veloko ratno ostrvo“. Beograd: Javno komunalno preduzeće „Zelenilo-Beograd“.
Kawalko, D., Jezierski, P., & Kabala, C. (2021). Morphology and Physicochemical Properties of Alluvial Soils in Riparian Forests after River Regulation. Forests, 12 (3), 329.
Łabaz, B., & Kabala, C., (2016). Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena, 139, 117–126.
Łachacz, A., & Nitkiewicz, S. (2021). Classification of soils developed from bottom lake deposits in north-eastern Poland. Soil Science Annual, 72 (2), 140643.
Lin, Y.S, Lin, Y.W., Wang, Y., Chen, Y.G., Hsu, M.L., Chiang, S.H., & Chen, Z.S. (2007). Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan–Hukou Tableland, Northwestern Taiwan. Geomorphology, 90, 36–54.
Lin, Y.S., Chen, Y. G., Chenc, Z. S., & Hsieh, M. L. (2005) Soil morphological variations on the Taoyuan Terrace, Northwestern Taiwan: Roles of topography and groundwater. Geomorphology 69, 138–151.
Marković, B., Veselinović, M., Obradović, Z., Anđelković J., Atin, B., & Kostadinov, D. (1984). Basic Geological Map - Sheet number L34–113. Geological information systems of Serbia (GeolISS). Retrieved June 12, 2024, from, https://geoliss.mre.gov.rs/prez/OGK/RasterSrbija/OGKWebOrig/listovi.php?karta=Beograd
Moraru, S.S., Ene, A., & Badila, A., (2020). Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania. Sustainability, 12, 9174.
Okusami, T.A. (1985). Hydromorphism - Its definition and correlation between three major classification systems with reference to West Africa. Ife Journal of Agriculture, 7, 26–34.
Pollmann, T., Junge, B., & Giani, L. (2018). Landscapes and soils of North Sea Barrier Islands: A comparative analysis of the old west and young east of Spiekeroog Island (Germany). Erdkunde, 72 (4), 273–286.
Prokof'eva, T.V., Varava, O.A., Sedov, S.N., & Kuznetsova, A.M., (2010). Morphological diagnostics of pedogenesis on the anthropogenically transformed floodplains in Moscow. European Journal of Soil Science, 43 (4), 368–379.
Rabenhorst, M., Wassel, B., Stolt M., & Lindbo D. (2017). Is there a case be made for a "Wet" soil order? Retrieved July 18, 2024, from file:///C:/Users/ml034/Downloads/Phoenix%20poster%202016%20Wet%20Soil%20Order%2005%20(2).pdf
Repe, B., (2020). Classifi cation of soils in Slovenia. Soil Science Annual, 71(2), 158–164.
Resulović, H., Čustović, H., & Čengić, I. (2008). Sistematika tla/zemljišta. Sarajevo: Poljoprivredno prehrambeni fakultet Univerziteta u Sarajevu.
RHSS. (2024). Meterology - Climatology - 30 years averages. Republic Hydrometerological Service of Serbia. Retrieved July 12, 2024, from http://www.hidmet.gov.rs/ciril/meteorologija/stanica_sr.php?moss_id=13274
Rubinić, V., Ilijanić, N., Magdić, I., Bensa, A., Husnjak, S., & Krklec, K. (2020). Plasticity, Mineralogy, and WRB Classification of Some Typical Clay Soils along the Two Major Rivers in Croatia. Eurasian Soil Science, 5 (7), 922–940.
Soil Survey Staff. (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Volume II: Agriculture Handbook. Washington: United States Department of Agriculture, Natural Resources Conservation Service.
Škorić, A., Filipovski, G., & Ćirić, M. (1985). Klasifikacija zemljišta Jugoslavije. Sarajevo: Akademija nauka i umjetnosti Bosne i Herecegovine.
Tošović., S. (2002). Ekološki atlas Beograda. Gradski zavod za javno zdravlje Beograd. Retrieved June 20, 2024, from https://www.zdravlje.org.rs/publikacije/ekoatlas/ekoatlas.pdf
Trajković, S. (2021). Upravljanje vodama i adaptacija na klimatske promene. GAF, Univerzitet u Nišu. Retrieved July 05, 2024, from http://gf94.gaf.ni.ac.rs/pluginfile.php/1384/mod_resource/content/1/02%20Upravljanje%20vodama%20i%20adaptacija%20na%20klimatske%20promene.pdf
Yakovenko, V., Kunakh, O., Tutova, H., & Zhukov, O. (2023). Diversity of soils in the Dnipro River valley (based on the example of the Dnipro-Orilsky Nature Reserve). Folia Oecologica, 50 (2), 119–133.
Zhang, Z.,, Zimmermann, N.E., Kaplan, J.O., & Poulter, B. (2016). Modeling spatiotemporal dynamics of global wetlands: Comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences, 13 (5), 1387–1408.
Zhangurova, E.V., Koroleva, M.A., Dubrovskiya, Y.A., & Shamrikova, E.V. (2023). Soils of the Ray-Iz Massif, Polar Urals. Eurasian Soil Science, 56, 405–418.
Published
2025/03/31
Section
Original Scientific Paper