SERBIAN BLACK TRUFFLE TUBER AESTIVUM: MICROBIOTA AND EFFECT OF DIFFERENT FREEZING REGIMES ON VOLATILE AROMA COMPOUNDS DURING STORAGE

  • Dusanka Paunovic
  • Milica Mirković Faculty of Agriculture Belgrade
  • Nemanja Mirkovic
  • Vele Tesevic
  • Jovana Stankovic Jeremic
  • Marina Todosijevic
  • Zorica Radulovic
Keywords: aroma compounds, bacteria, fungi, freezing, yeast

Abstract


The use of truffles in food is based mainly on artificial flavors addition, aiming to achieve an intense aroma in the products. As truffle is a natural product with nutritional and functional properties, it is important to find optimal way for truffle storage. As the microbiota contribute to truffles aroma, the bacterial and yeast composition in rhizosphere and fruiting body of the Serbian truffle, as well as the impact of at different freezing methods on volatile profile of the truffle Tuber aestivum during 90 days of the storage were determined. Bacterial and yeast isolation from fresh truffle was conducted and isolates were identified using 16s rRNA and 18s rRNA. Effect of truffles freezing at -20°C, -80°C with and without previous dipping in liquid N2 on the volatile compounds was observed using GC/MS. Results demonstrated that isolated bacteria belonged to the phylum Proteobacteria, Firmicutes and Actinobacteria, where identified species mainly belonged to Firmicutes, genus Bacillus sp. Isolated yeasts were identified as Cryptococcus sp., Debaromyces hanseinii, Candida fermentati and Rhodotorula mucilaginosa. The GC/MS analysis revealed differences in volatile profile of fresh and frozen truffles. Frozen samples were richer with compounds 2-butanone, 2-methyl-butanal, methanethiol and 2 butanol after freezing or during storage. Content of DMS, acetaldehyde, 3-octanone, ethanol, 2-methyl-1-propanol significantly decrease immediately after freezing. Overall, gained results indicated that freezing of truffles as preservation method had profound effect on volatile compounds, where previous dipping in liquid N2 showed no significant impact on volatile profile of truffle Tuber aestivum.

References

Al-Ruqaie I.M. (2006). Effect of different treatment processes and preservation methods on the quality of truffles: I. Conventional methods (drying/freezing). Journal of Food Processing and Preservation, 30(3), 335–351.


Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402.


Antony-Babu S., Deveau A., Van Nostrand J.D., Zhou J., Le Tacon F., Robin C., Frey-Klett P. & Uroz S. (2014). Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environmental Microbiology, 16(9), 2831–2847.


Barbieri E., Bertini L., Rossi I., Ceccaroli P., Saltarelli R., Guidi C., Zambonelli A. & Stocchi V. (2005). New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiology Letter, 247(1), 23–35.


Barbieri E., Guidi C., Bertaux J., Frey-Klett P., Garbaye J., Ceccaroli P., Saltarelli R., Zambonelli A. & Stocchi V. (2007). Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology, 9(9), 2234–2246.


Bonito G., Smith M.E., Nowak M., Healy R.A., Guevara G., Cázares E., Kinoshita A., Nouhra E.R., Domínguez L.S., Tedersoo L., Murat C., Wang Y., Moreno B.A., Pfister D.H., Nara K., Zambonelli A., Trappe J.M. & Vilgalys R. (2013). Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage. PLoS ONE, 8(1), e52765.


Buzzini P., Gasparetti C., Turchetti B., Cramarossa M.R., Vaughan-Martini A., Martini A., Pagnoni U.M. & Forti L. (2005). Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Archives of Microbiology, 184(3), 187–193.


Chen J., Li J.M., Tang Y.J., Xing Y.M., Qiao P., Li Y., Liu P.G. & Guo S.X. (2019). Chinese Black Truffle-Associated Bacterial Communities of Tuber indicum From Different Geographical Regions With Nitrogen Fixing Bioactivity. Frontiers in Microbiology, 10, 1–14.


Combet E., Eastwood D.C., Burton K.S. & Henderson J. (2006). Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience, 47, 317–326.


Costa R., Fanali C., Pennazza G., Tedone L., Dugo L., Santonico M., Sciarrone D., Cacciola F., Cucchiarini L., Dachà M. & Mondello L. (2015). Screening of volatile compounds composition of white truffle during storage by GCxGC-(FID/MS) and gas sensor array analyses. LWT - Food Science and Technology, 60(2), 905–913.


Culleré L., Ferreira V., Chevret B., Venturini M.E., Sánchez-Gimeno A.C. & Blanco D. (2010). Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography-olfactometry. Food Chemistry, 122(1), 300–306.


Culleré L., Ferreira V., Venturini M.E., Marco P. & Blanco D. (2013). Chemical and sensory effects of the freezing process on the aroma profile of black truffles (Tuber melanosporum). Food Chemistry, 136(2), 518–525.


de Andrade D.P., Carvalho B.F., Schwan R.F. & Dias D.R. (2017). Production of γ-decalactone by yeast strains under different conditions. Food Technology and Biotechnology, 55(2), 225–230.


Devos M., Patte F., Rouault J., Laffort P. & Van Gemert L.J. (1990). Standardized human olfactory thresholds.  Oxford:.IRL Press at Oxford University Press.


Díaz P., Ibáñez E., Señoráns F.J. & Reglero G. (2003). Truffle aroma characterization by headspace solid-phase microextraction. Journal of Chromatography, 1017(1–2), 207–214.


Effenberger I., Hoffmann T., Jonczyk R. & Schwab W. (2019). Novel biotechnological glucosylation of high-impact aroma chemicals, 3(2H)- and 2(5H)-furanones. Scientific reports, 9, 10943.


Feng T., Shui M., Song S., Zhuang H., Sun M. & Yao L. (2019). Characterization of the key aroma compounds in three truffle varieties from China by flavoromics approach. Molecules, 24(18), 3305.


Fiecchi A., Kienle M.G., Scala A. & Cabella P. (1967). Bis-methylthiomethane, an odorous substance from white tuber magnatum pico. Tetrahedron Letters, 8, 1681–1682.


Gioacchini A.M., Menotta M., Bertini L., Rossi I., Zeppa S., Zambonelli A., Piccoli G. & Stocchi V. (2005). Solid-phase microextraction gas chromatography/mass spectrometry: A new method for species identification of truffles. Rapid Communications in Mass Spectrometry, 19(17), 2365–2370.


Gryndler M., Soukupová L., Hršelová H., Gryndlerová H., Borovička J., Streiblová E. & Jansa J. (2013). A quest for indigenous truffle helper prokaryotes. Environmental Microbiology Reports, 5(3), 346–352.


Jaworska G. & Bernaś E. (2009). The effect of preliminary processing and period of storage on the quality of frozen Boletus edulis (Bull: Fr.) mushrooms. Food Chemistry, 113(4), 936–943.


Jovčić B., Begovic J., Lozo J., Topisirović L. & Kojić M. (2009). Dynamics of sodium dodecyl sulfate utilization andantibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Archives of Biological Sciences, 61(2), 159-164.


Lin F.C., Zambonelli A., Amicucci A., Chen J., Li C.J., Tang J.M., Xing Y.J., Li Q.P., Liu Y., Li J.M., Tang Y.J., Xing Y.M., Qiao P., Li Y., Liu P.G. & Guo S.X. (2019). Chinese Black Truffle-Associated Bacterial Communities of Tuber indicum From Different Geographical Regions With Nitrogen Fixing Bioactivity. Frontiers in Microbiology, 10, 2515.  


March R.E., Richards D.S. & Ryan R.W. (2006). Volatile compounds from six species of truffle - Head-space analysis and vapor analysis at high mass resolution. International Journal of Mass Spectrometry, 249250, 60–67.


Marjanović Ž., Grebenc T., Marković M., Glišić A. & Milenković M. (2010). Ecological specificities and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sydowia, 62(1), 67–87.


Martin F., Kohler A., Murat C., Balestrini R., Coutinho P.M., Jaillon O., Montanini B., Morin E., Noel B., Percudani R., Porcel B., Rubini A., Amicucci A., Amselem J., Anthouard V., Arcioni S., Artiguenave F., Aury J.M., Ballario P., … & Wincker P. (2010). Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 464(7291), 1033–1038.


Monaco P., Toumi M., Sferra G., Tóth E., Naclerio G. & Bucci A. (2020). The bacterial communities of Tuber aestivum: Preliminary investigations in Molise region, Southern Italy. Annals of Microbiology, 70(1), 37.


Mustafa A.M., Angeloni S., Nzekoue F.K., Abouelenein D., Sagratini G., Caprioli G. & Torregiani E. (2020). An Overview on Truffle Aroma and Main Volatile Compounds. Molecules, 25(24), 5948.


Nikolić B., Matović M., Mladenović K., Todosijević M., Stanković J., Đorđević I., Marin P.D. & Tešević V. (2019). Volatiles of thymus serpyllum obtained by three different methods. Natural Product Communications, 14(6), 1–3.


Nikolić B., Matović M., Todosijević M., Stanković J., Cvetković M., Marin P.D. & Tešević V. (2018). Volatiles of tanacetum macrophyllum obtained by different extraction methods. Natural Product Communications, 13(7), 891–893.


Ong P.K.C. & Acree T.E. (1998). Gas Chromatography/Olfactory Analysis of Lychee (Litchi chinesis Sonn.). Journal of Agricultural and Food Chemistry, 46(6), 2282–2286.


Pacioni G., Leonardi M., Aimola P., Ragnelli A.M., Rubini A. & Paolocci F. (2007). Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycological Research, 111(12), 1450–1460.


Perlińska-Lenart U., Piłsyk S., Gryz E., Turło J., Hilszczańska D. & Kruszewska J.S. (2020). Identification of bacteria and fungi inhabiting fruiting bodies of Burgundy truffle (Tuber aestivum Vittad.). Archives of Microbiology, 202(10), 2727–2738.


Randazzo C.L., Torriani S., Akkermans A.D.L., De Vos W.M. & Vaughan E.E. (2002). Diversity, dynamics, and activity of bacterial communities during production of an artisanal sicilian cheese as evaluated by 16S rRNA analysis. Applied and Environmental Microbiology, 68(4), 1882–1892.


Rajarathnam S. & Shashirekha M.N. (2003). Mushrooms and Truffles-Use of Wild Mushroom. In: Caballero B. (Ed.), Encyclopedia of Food Sciences and Nutrition, 2nd edition (4048-4054). Cambridge: Academic Press.


Rivera C.S., Blanco D., Salvador M.L. & Venturini M.E. (2010). Shelf-life extension of fresh Tuber aestivum and Tuber melanosporum truffles by modified atmosphere packaging with microperforated films. Journal of Food Science, 75(4), 225-233.


Saltarelli R., Ceccaroli P., Cesari P., Barbieri E. & Stocchi V. (2008). Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chemistry, 109(1), 8–16.


Sbrana C., Agnolucci M., Bedini S., Lepera A., Toffanin A., Giovannetti M. & Nuti M.P. (2002). Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiology Letters, 211(2), 195–201.


Spinnler H.E., Berger C., Lapadatescu C. & Bonnarme P. (2001). Production of sulfur compounds by several yeasts of technological interest for cheese ripening. International Dairy Journal, 11(4–7), 245–252.


Splivallo R., Deveau A., Valdez N., Kirchhoff N., Frey-Klett P. & Karlovsky P. (2015). Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environmental Microbiology, 17(8), 2647–2660.


Splivallo R., Ottonello S., Mello A. & Karlovsky P. (2011). Truffle volatiles: From chemical ecology to aroma biosynthesis. New Phytologist, 189(3), 688–699.


Stielow B. & Menzel W. (2010). Complete nucleotide sequence of TaV1, a novel totivirus isolated from a black truffle ascocarp (Tuber aestivum Vittad.). Archives of Virology, 155(12), 2075–2078.


Stobbe U., Egli S., Tegel W., Peter M., Sproll L. & Büntgen U. (2013). Potential and limitations of Burgundy truffle cultivation. Applied Microbiology and Biotechnology, 97(12), 5215–5224.


Strojnik L., Grebenc T. & Ogrinc N. (2020). Species and geographic variability in truffle aromas. Food and Chemical Toxicology, 142, 111434.


Vahdatzadeh M., Deveau A. &  Splivallo R. (2015). The role of the microbiome of truffles in aroma formation: A meta-analysis approach. Applied and Environmental Microbiology, 81(20), 6946–6952).


Vahdatzadeh M., Deveau A. & Splivallo R. (2019). Are bacteria responsible for aroma deterioration upon storage of the black truffle Tuber aestivum: A microbiome and volatilome study. Food Microbiology, 84, 103251.


Van Den Dool H. & Kratz P.D. (1963). A generalization of the re-tention index system including linear temperature pro-grammed gas-liquid partition chromatography. Journal of Chromatography, 11, 463–471.


White T.J., Bruns T.D., Lee S. & Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (Eds.). PCR protocols, a guide to methods and applications (315–322). San Diego: Academic Press.


Zacchi L., Vaughan-Martini A. & Angelini P. (2003). Yeast distribution in a truffle-field ecosystem. Annals of Microbiology, 53(3), 275–282.


Zambonelli A. (2012). Chinese Tuber aestivum sensu lato in Europe. The Open Mycology Journal, 6(1), 22–26.

Published
2023/10/06
Section
Original Scientific Paper