Comparative study on salt stress response of Camelina sativa and Carthamus tinctorius during germination
Abstract
Soil salinisation is one of the most significant global problems, leading to reduced agricultural productivity potential and biodiversity. The main salt commonly found on the surface of soils and in water is NaCl, which directly impacts plant growth and land degradation. Therefore, this study was conducted to examine the agronomic characteristics of two genotypes of Camelina sativa ('NS Slatka'; 'NS Zlatka') and two genotypes of Carthamus tinctorius ('NS Lana'; 'NS Una'), which potentially seclude them as salt-tolerant crops. The levels of salinity tolerance were compared under five treatments of NaCl, ranging from 0mM to 200mM. Based on the obtained results, seeds of all four genotypes germinated at the highest salt concentration (200mM NaCl), but the germination percentage declined at all salt concentrations. Moreover, lower salt concentrations induced root elongation and reduced shoot length of seedlings of all four genotypes. Salt stress tolerance indexes showed the importance of equating the plant parameters into mathematical indexes, and the significance of comparing all the tolerance indexes according to salt stress.
References
Almodares, A., Hadi, M. R. & Dosti, B. (2007). Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J. Biol. Sci. 7(8), 1492-1495. https://dx.doi.org/10.3923/jbs.2007.1492.1495.
Ashraf, M. Y., Ashraf, M., Mahmood, K., Akhter, J., Hussain, F. & Arshad, M. (2010). Phytoremediation of saline soils for sustainable agricultural productivity. Plant adaptation and phytoremediation, pp. 335-355. Springer, Dordrecht. https://www.doi.org/10.1007/978-90-481-9370-7_15.
Ashri, A., Zimmer, D. E., Urie, A. L., Cahaner, A. & Marani, A. (1974). Evaluation of the World Collection of Safflower, Carthamus tinctorius L. IV. Yield and Yield Components and Their Relationships 1. Crop Sci. 14(6), 799-802. https://doi.org/10.2135/cropsci1974.0011183X001400060006x.
Bandehagh, A. & Taylor, N. L. (2020). Can alternative metabolic pathways and shunts overcome salinity induced inhibition of central carbon metabolism in crops?. Frontiers in Plant Science, 11, 1072. https://doi.org/10.3389/fpls.2020.01072.
Channaoui, S., El Idrissi, I. S., Mazouz, H. & Nabloussi, A. (2019). Reaction of some rapeseed (Brassica napus L.) genotypes to different drought stress levels during germination and seedling growth stages. OCL, 26, 23. https://doi.org/10.1051/ocl/2019020.
Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. Eur. J. of Soil Sci. 72(2), 842-862. https://doi.org/10.1111/ejss.13010.
Demiral, T. & Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53(3), 247-257. https://doi.org/10.1016/j.envexpbot.2004.03.017.
Ekin, Z. (2005). Resurgence of safflower (Carthamus tinctorius L.) utilization: A global view. J. Agron. 4(2), 83-87. https://dx.doi.org/10.3923/ja.2005.83.87.
Ghorashy, S.R., Sionit N. & Kheradnam M. (1972). Salt tolerance of safflower varieties (Carthamus tinctorius L.) during germination, Agron. J. 64: 256-257. https://doi.org/10.2134/agronj1972.00021962006400020038x.
Gupta, B. & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics. https://doi.org/10.1155/2014/701596.
Hamdy, A., Abdul-Dayem, S. & Abu-Zeid, M., (1993). Saline water management for optimum crop production. Agric. Water Manag. 24, 189–203. https://doi.org/10.1016/0378-3774(93)90023-4.
Hanslin, H. M. & Eggen, T. (2005). Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Sci. Res. 15(1), 43-50. https://doi.org/10.1079/SSR2004196
Hasegawa, P. M., Bressan, R. A., Zhu, J. K. & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Biol. 51(1), 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
Hosseini, M. K., Powell, A. A. & Bingham, I. J. (2002). Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci. Res. 12(3), 165-172. https://doi.org/10.1079/SSR2002108
Isayenkov, S. V. & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Front. Plant Sci. 10, 80. https://doi.org/10.3389/fpls.2019.00080.
Jamshidi, A. & Javanmard, H. R. (2018). Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Engineering J 9(4), 2093-2099. https://doi.org/10.1016/j.asej.2017.02.006.
Jovičić, D., Nikolić, Z., Zorić, M., Marjanović-Jeromela, A., Petrović, G., Milošević, D. & Ignjatov, M. (2014). Viability of oilseed rape (Brassica napus L.) seeds under salt stress. Genetika-Belgrade, 46(1), 137-148. http://dx.doi.org/10.2298/GENSR1401137J.
Julkowska, M. M. & Testerink, C. (2015). Tuning plant signaling and growth to survive salt. Trends Plant Sci. 20(9), 586-594. https://doi.org/10.1016/j.tplants.2015.06.008.
Kage, H., Kochler, M. & Stützel, H. (2004). Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Euro J Agron. 20(4), 379-394. https://doi.org/10.1016/S1161-0301(03)00061-3.
Kumar, A. (2017). Germination behavior of soybean varieties under different salinity stress. Int. J. Appl. Agric. Res, 12, 69-76. http://www.ripublication.com
Li, Q., Yang, A. & Zhang, W. H. (2019). Higher endogenous bioactive gibberellins and α-amylase activity confer greater tolerance of rice seed germination to saline-alkaline stress. Environ. Exp. Bot. 162, 357-363. https://doi.org/10.1016/j.envexpbot.2019.03.015.
Matthees, H. L., Thom, M. D., Gesch, R. W. & Forcella, F. (2018). Salinity tolerance of germinating alternative oilseeds. Ind Crop Prod. 113, 358-367. https://doi.org/10.1016/j.indcrop.2018.01.042.
Mostafavi, K. (2011). An evaluation of safflower genotypes (Carthamus tinctorius L.), seed germination and seedling characters in salt stress conditions. Afr. J. Agric. Res. 6(7), 1667-1672. https://dx.doi.org/10.5897/AJAR10.915.
Mohammed, M. E., Benbella, M. & Talouizete, A. (2002). Effect of sodium chloride on sunflower (Helianthus annuus L.) seed germination. Helia, 25(37), 51-58. https://doi.org/10.2298/HEL0237051M.
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C. & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. J Environ. Manage. 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736.
Shahid, S. A., Zaman, M. & Heng, L. (2018). Soil salinity: historical perspectives and a world overview of the problem. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 43-53). Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_2.
Sun, F., Zhang, W., Hu, H., Li, B., Wang, Y., Zhao, Y. & Li, X. (2008). Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant physiology, 146(1), 178-188. https://doi.org/10.1104/pp.107.109413.
Shrivastava, P. & Kumar, R. (2015). Soil salinity: A serious environmental issue, and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol. Sci. 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001.
Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use Manag. 38(1), 39-67. https://doi.org/10.1111/sum.12772
Singh, V. & Nimbkar, N. (2006). Safflower (Carthamus tinctorius L.). Chapter, 6, 167-194. In: Singh, R.J., Ed., Genetic Resources Chromossome Engineering, and Crop Improvement: Oil Crops, CRC Press, New York, 168-194. http://dx.doi.org/10.1201/9781420005363.ch6