POTATO MINITUBER PRODUCTION BY AEROPONICS: EFFECTS OF GENOTYPE AND PLANT ORIGIN
Abstract
Aeroponics is a modern farming technology for growing potatoes without soil, enabling the efficient production of high-quality pre-basic seed potatoes (minitubers). In this system, the roots and underground stems (stolons) of the potato plants grow within closed modules, suspended in a fine mist of a nutrient-rich solution that continuously recirculates. This setup enables the formation of numerous minitubers with a length greater than 10 mm during the growing period. Our study aimed to evaluate the impact of genotype and planting material origin on minituber production in an aeroponic facility in Guča, Serbia. Three potato cultivars were analyzed: Cleopatra, Kennebec, and Désirée, using two types of planting material: acclimated microplants and plants derived from the previous season's minitubers. The plants were cultivated aeroponically from late May to December 2019, with a planting density of 24 plants per square meter and harvest intervals of approximately 14 days. The cultivar Désirée produced the highest average number of minitubers per plant (19.89), followed by Kennebec (15.71) and Cleopatra (11.05). The average weight of minitubers was significantly greater in plants grown from last season's minitubers compared to plants of in vitro origins. The Kennebec plants originating from minitubers achieved the highest yield of 10.27 kg per square meter. Additionally, plants originating from minitubers consistently produced tubers throughout the entire cultivation period in the aeroponic growing system.
References
Broćić, Z., Milinković, M., Momčilović, I., Poštić, D, Oljača, J, Veljković, B., & Milošević, D. (2018). Production of potato mini-tubers in the aeroponic growing system. Journal on Processing and Energy in Agriculture, 22(1), 49-52. https://doi.org/10.5937/JPEA1801049B
Broćić, Z., Milinković, M., Momčilović, I., Poštić, D., Oljača, J., Veljković, B., & Milošević, D. (2019a). Effect of the variety and origin of plants on the production of virus-free potato minitubers in the aeroponic growing system. Journal on Processing and Energy in Agriculture, 23(3), 147-149. https://doi.org/10.5937/JPEA1903147B
Broćić, Z., Milinković, M., Momčilović, I., Oljača, J., Veljković, B., Milošević, D. & Poštić, D. (2019b). Comparison of aeroponics and conventional production system of virus-free potato mini tubers in Serbia. Agro-knowledge Journal/Агрознање, 20(2), 95-105. https://doi.org/10.7251/AGREN1902095B
Broćić Z., Momčilović I., Poštić D., Oljača J., & Veljković B. (2021). Production of High-Quality Seed Potato by Aeroponics. In P. M. Villa (Ed.) The Potato Crop: Management, Production, and Food Security (pp. 25-59). New York: Nova Science Publishers. https://doi.org/10.52305/RHLO1469
Broćić, Z., Oljača, J., Pantelić, D., Rudić J., & Momčilović, I. (2022). Potato aeroponics: effects of cultivar and plant origin on minituber production. Horticulturae, 8, 915. https://doi.org/10.3390/horticulturae8100915
Broćić, Z., Oljača, J., Pantelić, D., Rudić, J., Poštić, D., & Momčilović I. (2023). Effects of cultivar and plant origin on the aeroponic production of potato minitubers. Proceedings of the XII International Symposium on Agricultural Sciences "AgroReS 2023", (pp. 9-18). Trebinje, Bosnia and Herzegovina. ISSN 2831-1248. https://agrores.net/en/proceedings/
Buckseth T., Tiwari J. K., Singh R. K., Kumar V., Sharma A. K., Dalamu D., Bhardwaj V., Sood S., Kumar M., Sadawarti M., Challam C., Naik S., & Pandey N. K. (2022). Advances in innovative seed potato production systems in India. Frontiers in Agronomy, 4, 956667. https://doi.org/10.3389/fagro.2022.956667
Chang, D. C., Cho, I. C., Suh, J. T., Kim, S. J., & Lee, Y. B. (2011). Growth and yield response of three aeroponically grown potato cultivars (Solanum tuberosum L.) to different electrical conductivities of nutrient solution. American Journal of Potato Research, 88(6), 450-458. https://doi.org/10.1007/s12230-011-9211-6
Farran, I., & Mingo-Castel, A. M. (2006). Potato minituber production using aeroponics: effect of plant density and harvesting intervals. American Journal of Potato Research, 83(1), 47-53. https://doi.org/10.1007/BF02869609
Food and Agriculture Organization of the United Nations, FAO (2023). FAOSTAT database. Retrieved July 15, 2024, from https://www.fao.org/statistics/en
Lakhiar, I. A., Gao, J., Syed, T. N., Chandio, F. A., & Buttar, N. A. (2018). Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. Journal of Plant Interactions, 13(1), 338-352. http://dx.doi.org/10.1080/17429145.2018.1472308
Mateus-Rodríguez, J., de Haan, S., Barker, I., Chuquillanqui, C., & Rodríguez-Delfín, A. (2012). Response of three potato cultivars grown in a novel aeroponics system for mini-tuber seed production. ISHS Acta Horticulturae, 947, 361–367. https://doi.org/10.17660/ActaHortic.2012.947.46
Mateus-Rodriguez, J. R., de Haan, S., Andrade-Piedra, J. L., Maldonado, L., Hareau, G., Barker, I., … & Benítez, J. (2013). Technical and economic analysis of aeroponics and other systems for potato mini-tuber production in Latin America. American Journal of Potato Research, 90(4), 357-368. https://doi.org/10.1007/s12230-013-9312-5
Momčilović, I., Pantelić, D., Hfidan, M., Savić, J., & Vinterhalter, D. (2014). Improved procedure for detection of superoxide dismutase isoforms in potato, Solanum tuberosum L. Acta Physiologiae Plantarum, 36, 2059-2066. https://doi.org/10.1007/s11738-014-1583-z
Muthoni, J., Mbiyu, M., Lung’aho, C., Otieno, S., & Pwaipwai, P. (2017). Performance of two potato cultivars derived from in-vitro plantlets, mini-tubers and stem cuttings using aeroponics technique. International Journal of Horticulture, 7(27), 246-249. https://hortherbpublisher.com/index.php/ijh/article/view/3317
Naik, P. S., & Buckseth, T. (2018). Recent advances in virus elimination and tissue culture for quality potato seed production. In S. Gosal & S. Wani (Eds.) Biotechnologies of Crop Improvement, Volume 1: Cellular Approaches (pp. 131-158). Cham Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-78283-6_4
Nickols M.A. (2005): Aeroponics and potatoes. ISHS Acta Horticulturae, 670, 201–206. https://doi.org/10.17660/ActaHortic.2005.670.24
Otazú, V. (2010). Manual on quality seed potato production using aeroponics. Lima: International Potato Center (CIP). https://doi.org/10.4160/9789290603924
Ritter, E., Angulo, B., Riga, P., Herrán, C., Relloso, J., & San Jose, M. (2001). Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Research, 44(2), 127-135. https://doi.org/10.1007/BF02410099
Rykaczewska K. (2016). The potato minituber production from microtubers in aeroponic culture. Plant, Soil and Environment, 62, 210–214. https://doi.org/10.17221/686/2015-PSE
da Silva Filho, J. B., Fontes, P. C. R., Cecon, P. R., Ferreira, J. F., McGiffen, M. E., & Montgomery, J. F. (2020). Yield of potato minitubers under aeroponics, optimized for nozzle type and spray direction. HortScience, 55(1), 14-22. http://dx.doi.org/10.21273/HORTSCI13971-19
(2023). Statistical Yearbook оf the Republic of Serbia, Belgrade. Retrieved July 10, 2024, from https://publikacije.stat.gov.rs/G2023/PdfE/G20232056.pdf
Struik, P. C., & Wiersema, S. G. (1999). Seed Potato Technology. Wageningen, Netherlands: Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-759-2
Struik, P.C. (2007). The canon of potato science: 25. Minitubers. Potato Research, 50, 305–308. https://doi.org/10.1007/s11540-008-9051-z
Tierno, R., Carrasco, A., Ritter, E., & de Galarreta, J. I. R. (2014). Differential growth response and minituber production of three potato cultivars under aeroponics and greenhouse bed culture. American Journal of Potato Research, 91(4), 346-353. https://doi.org/10.1007/s12230-013-9354-8