STIMULACIJA SEMENA ELEKTROMAGNETNIM POLЈEM NISKIH FREKVENCIJA NA NEKE OSOBINE SOJE
Sažetak
Razvoj nauke i tehnologije dovodi do stvaranja novih pristupa u oplemenjivanju useva i različitih metoda za podsticanje povećanja produktivnosti viših biljaka. Jedna od najnovijih metoda je implementacija ekološki prihvatljive tehnike korišćenja pulsirajućeg elektromagnetnog polja niskih frekvencija (PEMP). U radu su prikazani rezultati uticaja elektromagnetne stimulacije semena soje na broj zrna po biljci, masu 1000 zrna i prinos zrna u različitim agroekološkim uslovima. Soja zauzima važno mesto u pogledu ishrane ljudi i životinja, jer seme soje obiluje bogatim sadržajem ulja, proteina i masti. U trogodišnjem istraživanju u periodu od 2013-2015 korišćena je sorta soje Valjevka, gajena pri različitim količinama organskog granuliranog živinskog đubriva formulacije 4:4:4 (kontrola – bez đubrenja, 750 kg.ha-1 i 1300 kg.ha-1). Pre setve, seme je bilo podvrgnuto stimulaciji elektromagnetnog polja niskih frekvencija (PEMP) u sledećim konfiguracijama: kontrola - bez stimulacije i stimulacija naizmeničnim magnetnim poljem (PEMP) sa indukcijom od 30 mT i vreme ekspozicije od 15 min. Utvrđeno je da je varijabilnost ispitivanih parametara zavisila od sva tri faktora i to na statistički značajnom nivou od 1%. Istovremeno, vrednosti ispitivanih parametara je bila najveća u 2014. godini uzgoja u odnosu na 2013. i 2015. godinu (izuzev mase zrna po biljci koja je bila najveća u 2013) pri đubrenju od 1300 kg.ha-1 i stimulaciji semena sa PEMP. Prosečan broj zrna pri stimulaciji semena bio je za 32,64% (77,82) viši nego bez PEMP (58,67). Masa 1000 zrna sa PEMP je iznosila 155,99 g, što je bilo više za 2,06% u odnosu na varijantu bez PEMP (152,83 g). Prosečan prinos zrna soje za sve tri godine istraživanja sa stimulacijom semena je bio 4,85% (3481,25 kg.ha-1) viši nego bez PEMP (3320,14 kg.ha-1). Stimulacija semana sa PEMP ima ekonomsku opravdanost, obzirom na rast cena soje na svetskoj berzi. Rezultati sugerišu da PEMP tretman semena soje ima potencijal u kvalitetnoj, bezbednoj i visoko rodnoj proizvodnji i da se suprotstavi neželјenim efektima poput suše i nedostatka đubriva.
Reference
Abdollahi, F., Niknam, V., Ghanati, F., Masroor, F., Noorbakhsh, S. N. (2012). Biological effects ofweak electromagnetic field on healthy and infected lime (Citrus aurantifolia) trees with phytoplasma. Sci World J. 1–6.
Anand, A., Nagarajan, S., Verma, A. P., Joshi, D. K., Pathak, P. C., Bhardwaj, J. (2012). Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.) Indian J Biochem Biophys. 49 (1), 63–70.
Araujo, Sde, S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D., Balestrazzi, A. (2016). Physical methods for seed invigoration: advantages and challenges in seed technology. Front. Plant Sci. 7:646. https://doi.org/10.3389/fpls.2016.00646
Bilalis, D., Katsenios, N., Efthimiadou, A., Efthimiadis, P., Karkanis, A., Khah, M., Mitsis, T. (2013). Magnetic field pre-sowing treatment as an organic friendly technique to promote plant growth and chemical elements accumulation in early stages of cotton. Australian Journal of Crop Science, 7 (1), 46-50.
Broszkiewicz, A., Detyn,a J., Bujak, H. (2018). Influence of the magnetic field on the germination process of Tosca Bean Seeds Phaseolus vulgaris L., Plant Breed. Seed Sci., 77, 103-116 (in print).
Bullard, E. C., Freedman, C., Gellman, H., Nixon, Jo. (1950). “The Westward Drift of the Earth's Magnetic Field”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(859), 67-92.
Cakmak, T., Cakmak, Z. E., Dumlupinar, R. & Tekinay, T. (2012). Analysis of apoplastic and symplastic antioxidant system in shallot leaves: impacts of weak static electric and magnetic field. J Plant Physiol. 169, 1066–1073 https://doi.org/10.1016/j.jplph.2012.03.011
Cvijanović, G., Đukić, V., Cvijanović, M., Cvijanović, V., Dozet, G., Đurić, N., Stepić, V. (2019), Importance of foliar treatment of soybeas in different agroecological conditions on grain yield oil content, 79-86, https://www.researchgate.net/publication/334132441
Cvijanović, M., Đukić, V. (2020). Application of biophysical in sustanable soybean production. Sustainable agriculture and rural development in terms of the Republic of Serbia strategic goals realization within the Danube region. Institute of Agricultural Economics, Belgrade, 339-356.
da Silva, J. A., Dobránszki, J. (2016). Magnetic fields: how is plant growth and development impacted? Protoplasma. 253 (2), 231-48. doi: 10.1007/s00709-015-0820-7
Dorff, E. (2007). The soybean, agriculture’s jack-of-trades, is gaining ground across Canada, Can. Agric. a Glance. Stat. Canada, 96-325-XIE, 1–13.
Đukić, V., Balešević-Tubić, S., Miladinov, Z., Dozet, G., Cvijanović, G., Đorđević, V., & Cvijanović, M. (2014). Soybean production and a possibility to economize the use of mineral fertilizers. Ratarstvo i povrtarstvo, 51(3), 161-165.
Đukić V., Balešević-Tubić Svetlana, Đorđević V., Tatić M., Dozet Gordana, Jaćimović G., Petrović Kristina (2011): Prinos i semenski kvalitet soje u zavisnosti od uslova godine. Rat Pov/Field Veg Crop Res. 48(1): 137-142.
Đukić, V., Miladinov, Z., Dozet, G., Cvijanović, M., Marinković, J., Cvijanović, G., Tatić, M. (2018). Uticaj vremena osnovne obrade zemljišta na masu 1000 zrna soje, Radovi sa XXXII savetovanja agronoma, veterinara, tehnologa i agroekonomista. 24 (1-2), 93-100.
Đukić, V., Miladinov, Z., Dozet, G., Cvijanović, M., Tatić, M., Miladinović, J., Balešević-Tubić, S. (2017). Pulsed electromagnetic field – a cultivation practice used to increase soybean seed germination and yield, Žemdirbyste Agriculture, 104 (4), 345-352.
Es’kov, E.K., Darkov, A. V. (2003). Consequences of high-intensity magnetic effects on the early growth processes in plant seeds and the development of honeybees, Biol. Bull. Russ. Acad. Sci., 30, 512–516, DOI: 10.1023/A:1025858905362
Florez, M., Carbonell, M. V., Martinez, E. (2007). Exposure of maize seeds to stationary magnetic fields: effects on germination and early growth. Environ. Exp. Bot. 59, 68–75. 10.1016/j.envexpbot.2005.10.006
Galland, P., Pazur, A. (2005). Magnetoreception in plants. J Plant Res. 118, 371–389.
Grewal, H. S., Maheshwari, B. L., (2011). Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings., Bioelectromagnetics, 32, 58–65, DOI: 10.1002/bem.20615.
Islam, M., Maffei, M. E., Vigani G. (2020). The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Front. Plant Sci. 11, 325. https://doi.org/10.3389/fpls.2020.00325
Jarayam, S., Castle, G. S., Margaritis, A. (1991). Effects of high electric field pulses on Lactobacillus Brevis at elevated temperatures, in Conf. Rec. IEEE-IAS Annual Meeting. 674–681.
Karimi, S., Hojati, S., Eshghi, S., Moghaddam, R. N., Jandoust, S. (2012). Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stressinduced in vitro. Sci Hortic, 137, 95–99.
Kataria, S., Baghel, L., Guruprasad, K. N. (2017). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and Agricultural Biotechnology, 10, 83- 90.
Lewandowska, S., Kozak, M. (2017). Current situation of seed production in the south western part of Poland, In: Agricultura-Scientia-Prosperitas. Seed and Seedlings. Proceedings Papers, 267–272.
Lewandowska, S., Michalak, I., Niemczyk, K., Detyna, J., Bujak, H. and Arik, P. (2019). Influence of the Static Magnetic Field and Algal Extract on the Germination of Soybean Seeds, Open Chemistry, 17 (1), 516-525. https://doi.org/10.1515/chem-2019-0039
Maffei, M. E. (2014). Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci. 5, 445, doi:10.3389/fpls.2014.00445
Milošev, D., Šeremešić, S. (2005). Uticaj pulsirajućeg elektromagnetnog polja na masu 1000 zrna i broj zrna po klasu ozime pšenice, Zbornik radova, Sveska 41, Naučni institut za ratarstvo i povrtarstvo, Novi Sad; 269-274.
Moon, J., Chung, H. (2000). Acceleration of germination of tomato seeds by applying AC electric and magnetic fields. Journal of Electrostatics, 48, 103-114.
Moussa, H. (2011). The impact of magnetic water application for improving common bean Phaseolus vulgaris L.) production, New York Sci. J., 4, 15–20.
Nair, R. M., Leelapriya, T., Dhilip, K. S., Boddepalli, V. N., Ledesma, D. R. (2018). Beneficial effects of extremely low frequency (ELF) sinusoidal magnetic field (SMF) exposure on mineral and protein content of mungbean seeds and sprouts. Indian Journal of Agricultural Research, 52 (2), 126-132.
Negishi, Y., Hashimoto, A., Tsushima, M., Dobrota, C., Yamashita, M., Nakamura, T. (1999). Growth of pea epicotyl in low magnetic field - implication for space research. Adv. Space Res., 23 (12), 2029-2032.
Nikolić, Z., Petrović, G., Ignjatov, M., Milošević, D., Jovičić, D., Tamindžić, G. (2019). Genetically modified crops and food, Hrana i Ishrana, 60 (1), 1-4, DOI:10.5937/hraIsh1901001N
Payez, A., Ghanati, F., Behmanesh, M., Abdolmaleki, P., Hajnorouzi, A., Rajabbeigi, E. (2013). Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field. Electromagn. Biol. Med. 32, 417–429. 10.3109/15368378.2012.735625
Pietruszewski, S., Muszyñski, S., Dziwulska, A. (2007). Electromagnetic fields and electromagnetic radiation as non-invasive external stimulants for seeds (selected methods and responses), Int. Agrophysics, 21, 95-100.
Radhakrishnan, R. (2019). Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol Mol Biol Plants. 25(5), 1107-1119. doi: 10.1007/s12298-019-00699-9.
Radhakrishnan, R., Kumari, Ranjitha, B. (2012). Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiol Bioch; 51, 139-144.
Radhakrishnan, R., Ranjitha-Kumari, B. D. (2013). Protective role of pulsed magnetic field against salt stress effects in soybean organ culture. Plant Biosyst. 147 (1), 135–140.
Sarraf, M., Kataria, S., Taimourya, H., Santos, Lucielen, O., Menegatti, D. R., Jain, M., Ihtisham, M., Liu, S. (2021). Magnetic Field (MF) Applications in Plants: An Overview, Plants, 9, 1139; doi:10.3390/plants9091139
Sen, A., Alikamanoglu, S. (2014). Effects of static magnetic field pretreatment with and without PEG 6000 or NaCl exposure on wheat biochemical parameters. Russ J Plant Physiol. 61 (5), 646–655.
Shabrangy, A., Ghatak, A., Zhang, S., Priller, A., Chaturvedi, P., Weckwerth, W. (2021). Magnetic Field Induced Changes in the Shoot and Root Proteome of Barley (Hordeum vulgare L.). Front Plant Sci. 12: 622795. doi:10.3389/fpls.2021.622795
Shine, M. B., Guruprasad, K. N. & Anand, A. (2012). Effect of Stationary Magnetic Field Strengths of 150 and 200 mT on Reactive Oxygen Species Production in Soybean. Bioelectromagnetics 33, 428–437.
Smith, S. D., McLeod, B. R., Liboff, A. R. (1993). Effect of CR-tuned 60 Hz magnetic fields on sprouting and early growth of Raphanus Sativus, Bioelectrochem Bionerg, 32, 67-76.
Stankovic, M., Cvijanovic, M., & Dukic, V. (2016). Ecological importance of electrical devices innovative in the process of anti Ambrosia artemisiifolia L. Economics of Agriculture, 3, 861–870 DOI:10.5937/ekoPolj1603861S
Sujak, A., Dziwulska-Hunek, A., Reszczyńska, E. (2013). Effect of Electromagnetic Stimulation on Selected Fabaceae Plants, Pol. J. Environ. Stud. 22, 3, 893-898.
Sukhov, V., Sukhova, E., Sinitsyna, Y., Gromova, E., Mshenskaya, N., Ryabkova, A., Lin, N., Vodeneev, V., Маreev, E., Price, C. (2021). Influence of Magnetic Field with Schumann Resonance Frequencies on Photosynthetic Light Reactions in Wheat and Pea. Cells. 10 (1), 149. doi: 10.3390/cells10010149
Toleikiene, M., Slepetys, J., Sarunaite, L., Lazauskas, S., Deveikyte, I., Kadziuliene, Z. (2021). Soybean Development and Productivity in Response to Organic Management above the Northern Boundary of Soybean Distribution in Europe. Agronomy, 11, 214. https://doi.org/10.3390/ agronomy11020214
Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian Journal of Plant Physiology (Special Issue), 179-186.
Young, V. R. (1991). Soy protein in relation to human protein and amino acid nutrition, J. Am. Diet. Assoc., 91, 828–835.
