POREĐENJE PROIZVODNIH PERFORMANSI I KVALITETA PLODA IZMEĐU NOVOSTVORENIH ITALIJANSKIH JEDNORODNIH SORTI JAGODE

  • Jasminka Milivojević Poljoprivredni fakultet Univerzitet u Beogradu
  • Dragan Radivojević Poljoprivredni fakultet, Univeryitet u Beogradu
  • Dragica Milosavljević Institut za Multidisciplinarna istraživanja, Univerzitet u Beogradu
  • Vuk Maksimović
  • Jelena Dragišić Maksimović
Ključne reči: jagoda, sorta, vegetativni rast, vreme zrenja, produktivnost, kvalitet ploda

Sažetak


Ova istraživanja ilustruju razlike u fenologiji, produktivnosti i kvalitetu ploda novostvorenih jednorodnih sorti jagode (‘Quicky’, ‘Sandra’, ‘Lofty’, ‘Mila’ and ‘Aprica’) poreklom iz Italije sa ciljem prepoznavanja njihovog potencijala za širi uzgoj. Istraživanja su izvedena u plantažnom zasadu jagode u blizini Šida (Srbija) tokom perioda 2021-2022. godina. Zasad je podignut u julu 2020. godine, u dvoredom sistemu na gredicama prekrivenim crnom polietilenskom folijom. Kod sorti su ispitivani vreme cvetanja i zrenja, komponente prinosa, vegetativni rast, kao i biometrijske osobine ploda (masa ploda, indeks oblika ploda) i nutritivna vrednost ploda (sadržaj rastvorljive suve materije, ukupnih kiselina, vitamina C, ukupnih antocijana, ukupnih fenola i antioksidativni kapacitet ploda). Rezultati su pokazali da je najraniji početak zrenja imala sorta ‘Quicky’, dok je najkasniji registrovan kod sorte ‘Aprica’ u obe eksperimentalne godine. Broj krunica po bokoru je bio značajno veći kod sorti ‘Sandra’ i ‘Lofty’, pri čemu je sorta ‘Sandra’ takođe imala i najveći broj listova u rozeti (41,5) u poređenju sa ostalim ispitivanim sortama. Sorta ‘Aprica’ je ispoljila superiornost u pogledu najveće produktivnosti (1061 g/biljci i 4,67 kg/m2), praćeno sa najvećom krupnoćom ploda (29,9 g) i indeksom oblika ploda (1,15). Suprotno tome, najniži rodni potencijal je utvrđen kod sorte ‘Mila’ (608 g/biljci i 2,68 kg/m2). Najviše rangirane u pogledu sadržaja rastvorljive suve materije su bile sorte ‘Lofty’ i ‘Sandra’, a one su se karakterisale i značajno višim sadržajem ukupnih fenola (1,29 mg GAE ekv.g-1 sveže mase ploda ) i ukupnih antocijana (24,4 mg pg-3-g ekv.100 g-1 sveže mase ploda), po redosledu pominjanja.

Reference

Aaby, K.; Mazur, S., Nes, A.; & Skrede, G. (2012). Phenolic compounds in strawberry (Fragaria × ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chemistry, 132 (1), 86− 97.


Arnao, M.B., Cano, A., & Acosta, M. (1999). Methods to measure the antioxidant activity in plant material. A comparative discussion. Free Radical Research, 31, 89-96.


Capocasa, F., Balducci, F., Martellini, C., & Albanesi, A. (2017). Yield and fruit quality of strawberry cultivars grown in organic farming in the mid-Adriatic area. Acta Horticulturae 1156, 619-626.


Capocasa, F., Scalzo, J., Mezzetti, B., & Battino, M. (2008). Combining quality and antioxidant attributes in the strawberry: the role of genotype. Food Chemistry, 111, 872-878.


Cheng, G.W., & Breen, P.J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116, 865-869.


Choi, H.G., Moon, B., Kang, N., Kwon, J., Bekhzod, K., Park, K., and Lee, S. (2014). Yield loss and quality degradation of strawberry fruits cultivated under the deficient insolation conditions by shading. Horticulture Environment Biotechnology 55 (4), 263–270.


Dragišić Maksimović, J., Poledica, M., Mutavdžić, D., Mojović, M., Radivojević, D., & Milivojević, J. (2015). Variation in nutritional quality and chemical composition of fresh strawberry fruit: Combined effect of cultivar and storage. Plant Foods for Human Nutrition, 70 (1), 77−84.


Dragišić Maksimović, J., & Živanović, B.D. (2012). Quantification of the antioxidant activity in salt-stressed tissues. In Plant Salt Tolerance. Methods in Molecular Biology (Methods and Protocols), Vol. 913, S. Shabala, and T. Cuin, eds. (New York, USA: Springer Science+Business Media), 237–250.


Fan, Z., Hasing, T., Johnson, T.S., Garner, D.M., Schwieterman, M.L., Barbey, C.R., Colquhoun, T.A., Sims, C.A., Resende, M.F.R., & Whitaker, V.M. (2021). Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Horticulture Research, 8(1), 66. doi: 10.1038/s41438-021-00502-5.


Fotirić Akšić, M., Tosti, T., Sredojević, M., Milivojević, J., Meland, M., & Natić, M. (2019a). Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars grown in organic and integrated production system. Plants, 8, 205, 1-16.


Fotirić Akšić, M., Dabić Zagorac, D., Sredojević, M., Milivojević, J., Gašić, U., Meland, M., Natić, M. (2019b). Chemometric characterization of strawberries and blueberries according to their phenolic profile: combined effect of cultivar and cultivation system. Molecules 24 (23), 4310.


Giampieri, F., Tulipani, S., Alvarez-Suarez, J.M., Quiles, J.L., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28, 9–19.


Kalt, W., Forney, C.F., Martin, A., & Prior, R.L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47 (11), 4638−4644.


Krüger, E., Josuttis, M., Nestby, R., Toldam-Andersen, T.B., Carlen, C., & Mezzetti, B. (2012). Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality. Journal of Berry Research, 2 (3), 143–157.


Li, X., Guo, T., Mu, Q., Li, X., & Yu, J. (2018). Genomic and environmental determinants and their interplay underlying phenotypic plasticity. Proceedings of the National Academy of Sciences, 115(26), 6679-6684.


Manganaris, G.A., Goulas, V., Vicente, A.R., & Terry, L.A. (2014). Berry antioxidants: Small fruits providing large benefits. Journal of the Science of Food and Agriculture, 94 (5), 825–833.


Martinez-Ferri, E., Ariza, M.T., Dominguez, P., Medina, J.J., Miranda, L., Muriel, J.L., Montesinos, P., Rodriguez-Diaz, J.A., & Soria, C. (2014). Cropping strawberry for improving productivity and environmental sustainability. In book: Strawberries: Cultivation, Antioxidant Properties and Health Benefits. Edition: 1, Chapter: 1, Nova Science Publishers, 1-21.


Mezzetti, B., Balducci, F., Capocasa, F., Cappelletti, R., Di Vittori, L., Mazzoni, L., Giampieri, F., & Battino, M. (2016). Can we breed a healthier strawberry and claim it? Acta Horticulturae, 1117, 7–14.


Meulenbroek, E.J., Bokhorst, K., d’Hont, R.P.E., & van Dijk, T. (2015). Current developments in the breeding of new strawberry varieties from “Fresh Forward”. Proceedings of 5th Conference „Innovations in fruit growing“, topic „Modern strawberry production“, Faculty of Agriculture, Belgrade, 19-33.


Milivojević, J., Radivojević, D., Boškov, Dj., Milosavljević, D., Maksimović, V., & Dragišić Maksimović, J. (2021). Productivity and fruit quality of 'Clery' strawberry affected by planting density in a soilless growing system. Acta Horticulturae, 1309, 277-282.


Milivojević, J., Rakonjac, V., Fotirić Akšić, M., Bogdanović Pristov, J., & Maksimović, V. (2013). Classification and fingerprinting of different berries based on biochemical profiling and antioxidant capacity. Pesquisa Agropecuária Brasileira, 48, 1285–1294.


Milosavljević, D., Maksimović, V., Milivojević, J., & Dragišić Maksimović, J. (2021). A comparison of major taste- and health-related compounds among newly released Italian strawberry cultivars. Acta Horticulturae, 1309, 841-848.


Milosavljević, M.D., Mutavdžić, R.D., Radotić, K., Milivojević, M.J., Maksimović, M.V., & Dragišić Maksimović, J.J. (2020). Phenolic profiling of twelve strawberry cultivars using different spectroscopic methods. Journal of Agricultural and Food Chemistry, 68 (15), 4346–4354.


Min Kim, H., Lee, H.R. Kang, H.J., & Hwang, S.J. (2019). Prohexadione-calcium application during vegetative growth affects growth of mother plants, runners, and runner plants of Maehyang strawberry. Agronomy 9, 155-166.


Molano, Z.P., Rufato, L., Miranda, D., & Faguerazzi, A.F. (2021). Aplication of prohexadione calcium in strawberry seedlings cv. Pircinque. Revista Colombiana de Ciencias Hortícolas, 15(3).


Pantelidis, G.E., Vasilakakis, M., Manganaris, G.A., & Diamantidis, G. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry 102 (3), 777–783.


Panico, A.M., Garufi F., Nitto, S., Di Mauro, R., Longhitano, R.C., Magrı, G., Catalfo, A., Serrentino, M.E., & De Guidi, G. (2009). Antioxidant activity and phenolic content of strawberry genotypes from Fragaria × ananassa. Pharmaceutical Biology, 47, 203–208.


Savini, G., Neri, D., Zucconi, F., & Sugiyama, N. (2005). Strawberry growth and flowering, International Journal of Fruit Science, 5(1), 29-50,


Scalzo, J., Politi, A., Pellegrini, N., Mezzetti, B., & Battino, M. (2005). Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition, 21(2), 207-13.


Simpson, D.W. (2014). Strawberry breeding and genetics research in North West Europe. Acta Horticulturae, 1049, 107-111.


Sugiyama, N., Iwama, T., Inaba, Y., Kurokura, T., & Neri, D. (2004). Varietal differences in the formation of branch crowns in strawberry plants. Journal of the Japanese Society for Horticultural Science, 73(3), 216-220.


Tomić, J., Pešaković, M., Milivojević, J., & Karaklajic-Stajic, Ž. (2018). How to improve strawberry productivity, nutrients composition, and beneficial rhizosphere microflora by biofertilization and mineral fertilization? Journal of Plant Nutrition, 41, 2009–2021.


UPOV Code: FRAGA. 2012. Protocol for Distinctness, Uniformity and Stability Tests. Fragaria L. Strawberry. International Union for the Protection of New Varieties of Plants. Available online: https://www.upov.int/edocs/tgdocs/en/tg022.pdf


Vittori, L.D., Mazzoni, L., Battino, M., & Mezzetti, B. (2018). Pre-harvest factors influencing the quality of berries. Scientia Horticulturae, 233, 310-322.


Wang, H., Cao, G., & Prior, R.L. (1997). Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 45(2), 304-309.


 

Objavljeno
2023/06/30
Rubrika
Originalni naučni članak