KOMPONENTE FENOTIPSKE VARIJANSE I HERITABILNOST OSOBINA RANOG PORASTA HLEBNE PŠENICE POD KONTRASTNIM SNABDEVANJEM VODOM
Sažetak
Istraživanje potencijala za toleranciju na sušu i fenotipske plastičnosti arhitekture korenovog sistema u ranim fazama razvoja moglo bi biti ključno u pogledu oplemenjivanja na otpornost na sušu i za selekciju ideotipova pšenice u uslovima klimatskih promena. Ukupno 11 genotipova iz kolekcije od 101 genotipa hlebne pšenice, poreklom iz Srbije i 16 različitih zemalja sveta, sa poželjnim osobinama u smislu povećane tolerancije na sušu, odabrano je za roditelje i izvršeno je osam ukrštanja. Genotipovi iz P i F1 generacija gajeni su u hidroponskoj kultivaciji u osmotskom stresu izazvanom polietilen glikolom 6000. Cilj ovog istraživanja je bio da se procene komponente fenotipske varijanse i heritabilnosti u širem smislu osobina ranog porasta za devet osobina korena i izdanka genotipova hlebne pšenice u indukovanom vodnom stresu i u kontrolnim uslovima, kako bi se izabrale prikladne osobine za oplemenjivanje na otpornost na sušu. Uticaj genotipa bio je veći na varijabilnost testiranih osobina korena (46,6%), u poređenju sa testiranim osobinama izdanka (25,5%), što znači da se osobine korena mogu uzeti kao pouzdaniji kriterijum za selekciju na toleranciju na sušu u poređenju sa ispitivanim osobinama izdanka. Heritabilnost u širem smislu bila je visoka (> 82%) za većinu ispitivanih osobina (dužina primarnog korena, broj seminalnih korenova, ukupna dužina seminalnih korenova, ugao seminalnih korenova, dužina izdanka, odnos suve mase korena i suve mase izdanka), sa malom interakcijom genotip × sredina (< 20% ukupne varijacije) i oplemenjivanje na toleranciju na sušu trebalo bi da bude usmereno na ove osobine.
Reference
Afzal, F., Reddy, B., Gul, A., Khalid, M., Subhani, A., Shazadi, K., & Rasheed, A. (2017). Physiological, biochemical and agronomic traits associated with drought tolerance in a synthetic-derived wheat diversity panel. Crop and Pasture Science, 68 (3), 213-224.
Ahmed, K., Shabbir, G., & Ahmed, M. (2025). Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach. BMC Plant Biology, 25, 390.
Amare, A., Mekbib, F., Tadesse, W., & Tesfaye, K. (2020). Genotype x environmental interaction and stability of drought tolerant bread wheat (Triticum aestivum L.) genotypes in Ethiopia. International Journal of research Studies in Agricultural Sciences, 6 (3), 26-35.
Ayalew, H., Liu, H., Börner, A., Kobiljski, B., Liu, C., & Yan, G. (2018). Genome-wide association mapping of major root length QTLs under PEG induced water stress in wheat. Frontiers in Plant Science, 9, 1759.
Baloch, M.J., Dunwell, J., Khakwani, A.A., Dennett, M., Jatoi, W.A., & Channa, S.A. (2012). Assessment of wheat cultivars for drought tolerance via osmotic stress imposed at early seedling growth stages. Journal of Agricultural Research, 50, 299-310.
Bayoumi, T.Y., Eid, M.H., & Metwali, E.M. (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology, 7 (14), 2341-2352.
Beyer, S., Daba, S., Tyagi, P., Bockelman, H., Brown-Guedira, G., I.W.G.S.C., & Mohammadi, M. (2019). Loci and candidate genes controlling root traits in wheat seedlings-a wheat root GWAS. Functional & Integrative Genomics, 19, 91-107.
Bhandari, R., Paudel, H., Nyaupane, S., & Poudel, M.R. (2024). Climate resilient breeding for high yields and stable wheat (Triticum aestivum L.) lines under irrigated and abiotic stress environments, Plant Stress, 11, 100352.
Blažić, M., Dodig, D., Kandić, V., Đokić, D., & Živanović, T. (2021). Genotypic variability of root and shoot traits of bread wheat (Triticum aestivum L.) at seedling stage. Genetika-Belgrade, 53, 687-702.
Blažić, M., Dodig, D., Kandić, V., Branković, G., & Živanović, T. (2024). The impact of PEG-induced drought stress on early vigour traits of bread wheat. New Zealand Journal of Crop and Horticultural Science, 1-13. https://doi.org/10.1080/01140671.2024.2304766
Boudiar, R., Casas, A.M., Gioia, T., Fiorani, F., Nagel, K.A., & Igartua, E. (2020). Effects of low water awailability on root placement and shoot development in landraces and modern barley cultivars. Agronomy, 10 (1), 134.
Canè, M.A., Maccaferri, M., Nazemi, G., Salvi, S., Francia, R., Colalongo, C., & Tuberosa, R. (2014). Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Molecular Breeding, 34, 1629-1645.
Chen, Y., Palta, J., Prasad, P.V.V., & Siddique, K.H.M. (2020). Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biology, 20 (1), 185.
Christopher, J., Christopher, M., Jennings, R., Jones, S., Fletcher, S., Borrel, A., Manschadi, A.M., Jordan, D., Mace, E., & Hammer, G. (2013). QTL for root angle and number in a population developed from bread wheat (Triticum aestivum L.) with contrasting adaptation to water-limited environments. Theoretical and Applied Genetics, 126, 1563-1574.
Colombo, M., Roumet, P., Salon, C., Jeudy, C., Lamboeuf, M., Lafarge, S., Dumas, A.V., Dubreuil, P., Ngo, W., Derepas, B., Beauchêne, K., Allard, V., Le Gouis, J., & Rincent, R. (2022). Genetic analysis of platform-phenotyped root system architecture of bread and durum wheat in relation to agronomic traits. Frontiers in Plant Science, 25 (13), 853601.
Cooper, M., & Byth, D.E. (1996). Understanding plant adaptation to achieve systematic applied crop improvement-a fundamental challenge. In M. Cooper & G.L. Hammer (Eds.), Plant adaptation and crop improvement. (pp. 5-23). Wallingford: CABI Publishing.
Dhanda, S.S, Sethi, G.S., & Behl, R.K. (2004). Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science, 190 (1), 6-12.
Falconer, D.S. (1981). Introduction to quantitative genetics. London and New York: Longman.
Hameed, A., Goher, M., & Iqubal, N. (2010). Evaluation of seedling survivability and growth response as selection criteria for breeding drought tolerance in wheat. Cereal Research Communications, 38 (2), 193-202.
Hohn, C.E., & Bektas, H. (2020). Genetic mapping of quantitative trait loci (QTLs) associated with seminal root angle and number in three populations of bread wheat (Triticum aestivum L.) with common parents. Plant Molecular Biology Reporter, 38, 572-585.
Jain, N., Singh, G.P., Yadav, R., Pandey, R., Ramya, P., Shine, M.B., Pandey, V.C., Rai, N., Jha, J., & Prabhu, K.V. (2014). Root trait characteristics and genotypic response in wheat under different water regimes. Cereal Research Communications, 42 (3), 426-438.
Li, X., Ingvordsen, C.H., Weiss, M., Rebetzke, G.J., Condon, A.G., James, R.A., & Richards, R.A. (2019). Deeper roots associated with cooler canopies higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. Journal of Experimental Botany, 70, 4963-4974.
Manschadi, A.M., Christopher, J., deVoil, P., & Hammer, G.L. (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33, 823-837.
Manschadi, A.M., Hammer, G.L., Christopher, J.T., & deVoil, P. (2008). Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303, 115-129.
Minitab, (2021). Statistical Software, version 16. Minitab Incorporation. Retrieved January 11, 2020, from https://www.minitab.com/en-us/products/minitab/
Moore, C., & Rebetzke, G.J. (2015). Genomic regions for embryo size and early vigour in multiple wheat (Triticum aestivum L.) populations. Agronomy, 5, 152.
Ndukauba, J., Nwofia, G.E., Okocha, P.I., & Ene-Obong, E.E. (2015). Variability in egusi-melon genotypes (Citrullus lanatus [Thumb] Matsum and Nakai) in derived savannah environment in South-Eastern Nigeria. International Journal of Plant Research, 5 (1), 19-26.
Rajamanickam, V., Vinod, K.K., Vengavasi, K., Kumar, T., Chinnusamy, V., & Pandey, R. (2024). Root architectural adaptations to phosphorus deficiency: unraveling genotypic variability in wheat seedlings. Agriculture, 14 (3), 447.
Rasband, W.S. (2020). ImageJ. National Institutes of Health. Retrieved on January 01, 2020, from https://imagej.nih.gov/ij/
Rauf, M., Munir, M.M., Hassan, M., Ahmad, M., & Afzal, M. (2007). Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. African Journal of Biotechology, 6, 971-975.
Rebetzke, G.J., Zhang, H., Ingvordsen, C.H., Condon, A.G., Rich, S.M., & Ellis, M.H. (2022). Genotypic variation and covariation in wheat seedling seminal root architecture and grain yield under field conditions. Theoretical and Applied Genetics, 135 (9), 3247-3264.
Reddy, V.R.P., Aski, M.S., Mishra, G.P., Dikshit, H.K., Singh, A., Pandey, R., Singh, M.P., Gayacharan, Ramtekey, V., Priti, Rai, N., & Nair, R.M. (2020). Genetic variation for root architectural traits in response to phosphorus deficiency in mungbean at the seedling stage. PLoS One, 15 (6), e0221008.
Rogers, E.D., & Benfey, P.N. (2015). Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology, 32, 93-98.
Roselló, M., Royo, C., Sanchez-Garcia, M., & Soriano, J.M. (2019). Genetic dissection of the seminal root system architecture in mediterranean durum wheat landraces by genome-wide association study. Agronomy, 9, 364.
Rossi, R., Bochicchio, R., Labella, R., Amato, M., & De Vita, P. (2024). Phenotyping seedling root biometry of two contrasting bread wheat cultivars under nutrient deficiency and drought stress. Agronomy, 14, 775.
Sanguineti, M.C., Li, S., Maccaferri, M., Corneti, S., Rotondo, F., Chiari, T., & Tuberosa, R. (2007). Genetics dissection of seminal root architecture in elite durum wheat germplasm. Annals of Applied Biology, 151, 291-305.
Shahbazi, H., Bihamta, M.R., Taeb, M., & Darvish, F. (2012). Germination characters of wheat under osmotic stress: Heritability and relation with drought tolerance. International Journal of Agriculture: Research and Review, 2, 689-698.
Zhao, Z., Rebetzke, G.J., Zheng, B., Chapman, S.C., & Wang, E. (2019). Modelling impact of early vigour on wheat yield in dryland regions. Journal of Experimental Botany, 70 (9), 2535-2548.
