Immune response to SARS-CoV-2 and review of COVID-19 vaccines

  • Miloš Marković University of Belgrade Faculty of Medicine
Keywords: COVID-19; SARS-CoV-2; variants; immune response; immunity; vaccines; booster; efficacy; effectiveness; safety., COVID-19, SARS-CoV-2, variants, immune response, immunity, vaccines, booster, efficiency, effectiveness, safety

Abstract


The remarkable development of a large number of vaccines against COVID-19 in a very short period of time represents one of the greatest successes of medicine and science in history, and mass vaccination at the global level will be crucial for prevention and mitigation of COVID-19. However, there are still many open questions about the vaccines, and the protection they provide, and answers to those questions will not only help to control this pandemic, but they will also prepare us to react better in case of future outbreaks. This review will present the latest findings on the immune response to SARS-CoV-2 and give an update on COVID-19 immunity. It will also provide an overview of the most important vaccines against COVID-19, especially those available in Serbia, with an emphasis on their immunogenicity, efficacy and safety, as well as the platforms used for their development. In addition, a special attention will be given to open issues related to immunization against COVID-19, such as the duration of post-vaccination immunity, the degree of protection against new virus variants and the need for booster doses and mixing and matching of different COVID-19 vaccines.

References

1. World Health Organization: WHO Coronavirus (COVID-19) Dashboard. Dostupno na: https://covid19.who.int/ [Pristupljeno 23.7.2021]
2. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, et al. Structural insights into SARS-CoV-2 proteins. Journal of molecular biology. 2021;433(2):166725.
3. Kim YM, Shin EC. Type I and III interferon responses in SARS-CoV-2 infection. Experimental & molecular medicine. 2021;53(5):750-60.
4. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861-80.
5. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181(7):1489-501.e15.
6. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell. 2020;183(4):1024-42.e21.
7. McMahan K, Yu J, Mercado NB, Loos C, Tostanoski LH, Chandrashekar A, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021;590(7847):630-4.
8. Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang ML, et al. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. Journal of clinical microbiology. 2020;58(11).
9. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science (New York, NY). 2020;370(6522):1339-43.
10. Alfego D, Sullivan A, Poirier B, Williams J, Adcock D, Letovsky S. A population-based analysis of the longevity of SARS-CoV-2 antibody seropositivity in the United States. EClinicalMedicine. 2021;36:100902.
11. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;595(7867):421-5.
12. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (New York, NY). 2021;371(6529).
13. Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth to SARS-CoV-2 after one year. bioRxiv. 2021:2021.05.07.443175.
14. Jarjour NN, Masopust D, Jameson SC. T Cell Memory: Understanding COVID-19. Immunity. 2021;54(1):14-8.
15. Baumgarth N, Nikolich-Žugich J, Lee FE, Bhattacharya D. Antibody Responses to SARS-CoV-2: Let's Stick to Known Knowns. Journal of immunology (Baltimore, Md : 1950). 2020;205(9):2342-50.
16. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet (London, England). 2021;397(10283):1459-69.
17. Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet (London, England). 2021;397(10280):1204-12.
18. Subbarao K. The success of SARS-CoV-2 vaccines and challenges ahead. Cell host & microbe. 2021;29(7):1111-23.
19. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. The New England journal of medicine. 2021;384(23):2187-201.
20. Danas. Stručni komitet za imunizaciju: Preporuka da građani Srbije šest meseci posle druge, prime treću dozu i to RNK vakcine. Dostupno na: https://www.danas.rs/drustvo/preporuka-da-gradjani-srbije-sest-meseci-posle-druge-prime-trecu-dozu-i-to-rnk-vakcine/. [Pristupljeno 26.7.2021.]
21. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516-27.
22. Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Frontiers in immunology. 2018;9:1963.
23. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. The New England journal of medicine. 2020;382(21):1969-73.
24. Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020;52(4):583-9.
25. World Health Organization – Draft landscape and tracker of COVID-19 candidate vaccines. Dostupno na: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines [Pristupljeno 23.7.2021.]
26. Vaccine Centre at the London School of Hygiene & Tropical Medicine. Vaccine tracker. Dostupno na: https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/ [Pristupljeno 23.7.2021.]
27. World Health Organization. Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. Dostupno na: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_15July2021.pdf. [Pristupljeno 23.7.2021.]
28. Agencija za lekove i medicinska sredstva Srbije. Dostupno na: https://www.alims.gov.rs/. [Pristupljeno 23.7.2021.]
29. Radio Slobodna Evropa. Predsednik Srbije: Modernina vakcina stiže u oktobru. Dostupno na: https://www.slobodnaevropa.org/a/srbija-vucic-vakcina-moderna/31359862.html. [Pristupljeno 23.7.2021.]
30. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. The New England journal of medicine. 2021;384(5):403-16.
31. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine. 2020;383(27):2603-15.
32. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet (London, England). 2021;397(10275):671-81.
33. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet (London, England). 2021;396(10267):1979-93.
34. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (London, England). 2021;397(10269):99-111.
35. AZD1222 US Phase III primary analysis confirms safety and efficacy. Dostupno na: https://www.astrazeneca.com/media-centre/press-releases/2021/azd1222-us-phase-iii-primary-analysis-confirms-safety-and-efficacy.html. [Pristupljeno 23.7.2021.]
36. Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet (London, England). 2021;397(10277):881-91.
37. World Health Organization. AstraZeneca ChAdOx1-S/nCoV-19 [recombinant], COVID-19 vaccine. Dostupno na: https://www.who.int/publications/m/item/chadox1-s-recombinant-covid-19-vaccine. [Pristupljeno 23.7.2021.]
38. Single dose vaccine, Sputnik Light, authorized for use in Russia. Dostupno na: https://sputnikvaccine.com/newsroom/pressreleases/single-dose-vaccine-sputnik-light-authorized-for-use-in-russia/. [Pristupljeno 23.7.2021.]
39. Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. Jama. 2021;326(1):35-45.
40. Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell. 2020;182(3):713-21.e9.
41. World Health Organization. Interim recommendations for use of the inactivated COVID-19 vaccine BIBP developed by China National Biotec Group (CNBG), Sinopharm. Dostupno na: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-BIBP-2021.1. [Pristupljeno 23.7.2021.]
42. Krause P, Fleming TR, Longini I, Henao-Restrepo AM, Peto R. COVID-19 vaccine trials should seek worthwhile efficacy. Lancet (London, England). 2020;396(10253):741-3.
43. Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B, Charlett A, et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. Lancet (London, England). 2021;397(10286):1725-35.
44. Vasileiou E, Simpson CR, Shi T, Kerr S, Agrawal U, Akbari A, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. Lancet (London, England). 2021;397(10285):1646-57.
45. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. The New England journal of medicine. 2021;384(15):1412-23.
46. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet (London, England). 2021;397(10287):1819-29.
47. Menni C, Klaser K, May A, Polidori L, Capdevila J, Louca P, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. The Lancet Infectious diseases. 2021;21(7):939-49.
48. Thompson MG, Burgess JL, Naleway AL, Tyner HL, Yoon SK, Meece J, et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers - Eight U.S. Locations, December 2020-March 2021. MMWR Morbidity and mortality weekly report. 2021;70(13):495-500.
49. Levine-Tiefenbrun M, Yelin I, Katz R, Herzel E, Golan Z, Schreiber L, et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nature medicine. 2021;27(5):790-2.
50. The times of Israel. Israeli, UK data offer mixed signals on vaccine’s potency against Delta strain. Dostupno na: https://www.timesofisrael.com/israeli-uk-data-offer-mixed-signals-on-vaccines-potency-against-delta-strain/. [Pristupljeno 23.7.2021.]
51. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. The New England journal of medicine. 2021.
52. Reuters. Russia's Sputnik V vaccine 97.6% effective in real-world study. Dostupno na: https://www.reuters.com/article/health-coronavirus-russia-vaccine-idINL1N2MC1BG. [Pristupljeno 23.7.2021.]
53. Our World in Data. Coronavirus Pandemic (COVID-19). Dostupno na: https://ourworldindata.org/coronavirus. [Pristupljeno 23.7.2021.]
54. Klasse PJ, Nixon DF, Moore JP. Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. Science advances. 2021;7(12):eabe8065.
55. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589-93.
56. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. The Lancet Infectious diseases. 2021;21(1):39-51.
57. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet (London, England). 2020;396(10255):887-97.
58. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. The New England journal of medicine. 2020;383(20):1920-31.
59. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet (London, England). 2020;396(10249):467-78.
60. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature medicine. 2021;27(7):1205-11.
61. Jeewandara C, Aberathna IS, Pushpakumara PD, Kamaladasa A, Guruge D, Jayathilaka D, et al. Antibody and T cell responses to Sinopharm/BBIBP-CorV in naïve and previously infected individuals in Sri Lanka. medRxiv. 2021:2021.07.15.21260621.
62. Ebinger JE, Fert-Bober J, Printsev I, Wu M, Sun N, Prostko JC, et al. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nature medicine. 2021;27(6):981-4.
63. World Health Organization. Coronavirus disease (COVID-19): Vaccines safety. Dostupno na: https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines-safety. [Pristupljeno 23.7.2021.]
64. Centers for Disease Control and Prevention. Safety of COVID-19 Vaccines. Dostupno na: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/safety-of-vaccines.html. [Pristupljeno 23.7.2021.]
65. UK Government. Medicines & Healthcare products Regulatory Agency. Coronavirus vaccine - weekly summary of Yellow Card reporting . Dostupno na: https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronavirus-vaccine-summary-of-yellow-card-reporting. [Pristupljeno 23.7.2021.]
66. European Medicines Agency. Vaxzevria (previously COVID-19 Vaccine AstraZeneca). Dostupno na: https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca. [Pristupljeno 23.7.2021.]
67. Cines DB, Bussel JB. SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. The New England journal of medicine. 2021;384(23):2254-6.
68. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. The New England journal of medicine. 2021;384(22):2092-101.
69. World Health Oraganization. Global Advisory Committee on Vaccine Safety (GACVS) review of latest evidence of rare adverse blood coagulation events with AstraZeneca COVID-19 Vaccine (Vaxzevria and Covishield). Dostupno na: https://www.who.int/news/item/16-04-2021-global-advisory-committee-on-vaccine-safety-(gacvs)-review-of-latest-evidence-of-rare-adverse-blood-coagulation-events-with-astrazeneca-covid-19-vaccine-(vaxzevria-and-covishield). [Pristupljeno 23.7.2021.]
70. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.
71. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812-27.e19.
72. World Health Organization: COVID-19 Weekly Epidemiological Update, 25 February 2021 [updated 25 February 2021. Dostupno na: https://apps.who.int/iris/handle/10665/339859. [Pristupljeno 23.7.2021.]
73. World Health Organization: Tracking SARS-CoV-2 variants. Dostupno na: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. [Pristupljeno 23.7.2021.]
74. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nature medicine. 2021;27(4):622-5.
75. Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell host & microbe. 2021;29(7):1124-36.e11.
76. Fontanet A, Autran B, Lina B, Kieny MP, Karim SSA, Sridhar D. SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet (London, England). 2021;397(10278):952-4.
77. Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. The New England journal of medicine. 2021;385(2):187-9.
78. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. The New England journal of medicine. 2021;384(20):1885-98.
79. European Centre for Disease Prevention and Control. Assessing SARS-CoV-2 circulation, variants of concern, non-pharmaceutical interventions and vaccine rollout in the EU/EEA, 15th update – 10 June 2021. ECDC: Stockholm; 2021.
80. European Centre for Disease Prevention and Control. Implications for the EU/EEA on the spread of the SARSCoV-2 Delta (B.1.617.2) variant of concern - 23 June 2021. ECDC: Stockholm; 2021. .
81. Lustig Y, Zuckerman N, Nemet I, Atari N, Kliker L, Regev-Yochay G, et al. Neutralising capacity against Delta (B.1.617.2) and other variants of concern following Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in health care workers, Israel. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2021;26(26).
82. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021.
83. Krause PR, Fleming TR, Longini IM, Peto R, Briand S, Heymann DL, et al. SARS-CoV-2 Variants and Vaccines. The New England journal of medicine. 2021;385(2):179-86.
84. Doria-Rose N, Suthar MS, Makowski M, O'Connell S, McDermott AB, Flach B, et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. The New England journal of medicine. 2021;384(23):2259-61.
85. Pfizer and Biontech confirm high efficacy and no serious safety concerns through up to six months following second dose in updated topline analysis of landmark COVID-19 vaccine study. Dostupno na: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-confirm-high-efficacy-and-no-serious. [Pristupljeno 23.7.2021.]
86. Hacisuleyman E, Hale C, Saito Y, Blachere NE, Bergh M, Conlon EG, et al. Vaccine Breakthrough Infections with SARS-CoV-2 Variants. The New England journal of medicine. 2021;384(23):2212-8.
87. COVID-19 Vaccine Breakthrough Infections Reported to CDC - United States, January 1-April 30, 2021. MMWR Morbidity and mortality weekly report. 2021;70(21):792-3.
88. European Centre for Disease Prevention and Control. COVID-19 vaccine effectiveness - real-world evidence. Dostupno na: https://www.ecdc.europa.eu/en/covid-19/latest-evidence/vaccines. [Pristupljeno 23.7.2021.]
89. Centers for Disease Control and Prevention. COVID-19 Vaccine Breakthrough Case Investigation and Reporting. Dostupno na: https://www.cdc.gov/vaccines/covid-19/health-departments/breakthrough-cases.html. [Pristupljeno 23.7.2021.]
90. Callaway E. Mix-and-match COVID vaccines trigger potent immune response. Nature. 2021;593(7860):491.
91. Barros-Martins J, Hammerschmidt SI, Cossmann A, Odak I, Stankov MV, Morillas Ramos G, et al. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nature medicine. 2021. Online ahead of print. doi: 10.1038/s41591-021-01449-9.
92. Borobia AM, Carcas AJ, Pérez Olmeda, Teresa M, Castaño L, Jesús Bertrán M, et al. Reactogenicity and Immunogenicity of BNT162b2 in Subjects Having Received a First Dose of ChAdOx1s: Initial Results of a Randomised, Adaptive, Phase 2 Trial (CombiVacS). Dostupno na: SSRN: https://ssrn.com/abstract=3854768 ili http://dx.doi.org/10.2139/ssrn.3854768.
93. Shaw RH, Stuart A, Greenland M, Liu X, Nguyen Van-Tam JS, Snape MD. Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data. Lancet. 2021;397(10289):2043-6.
94. Liu X, Shaw RH, Stuart AS, Greenland M, Dinesh T, Provstgaard-Morys S, et al. Safety and Immunogenicity Report from the Com-COV Study – a Single-Blind Randomised Non-Inferiority Trial Comparing Heterologous And Homologous Prime-Boost Schedules with An Adenoviral Vectored and mRNA COVID-19 Vaccine. Dostupno na: SSRN: https://ssrn.com/abstract=3874014 ili http://dx.doi.org/10.2139/ssrn.3874014.
Published
2021/10/25
Section
Review Paper