Imunski odgovor na SARS-CoV-2 i pregled vakcina protiv COVID-19

  • Prof. dr Miloš Marković Medicinski fakultet Univerzitet u Beogradu
Ključne reči: COVID-19, SARS-CoV-2, varijante, imunski odgovor, imunitet, vakcine, revakcinacija, efikasnost, efektivnost, bezbednost

Sažetak


Uspešan razvoj velikog broja vakcina protiv COVID-19 u veoma kratkom periodu predstavlja jedan od najvećih uspeha medicine i nauke u istoriji i masovna vakcinacija na globalnom nivou nesumnjivo će biti presudna za kontrolu širenja virusa SARS-CoV-2. Ipak, postoje još mnoge nedoumice u vezi sa vakcinama i zaštitom koju one pružaju i njihovo rešavanje će sigurno doprineti uspešnoj kontroli ove pandemije, ali će nas i pripremiti da bolje reagujemo u slučaju nekih budućih epidemija i pandemija. U ovom preglednom članku biće ukratko prikazana najnovija saznanja o imunskom odgovoru na SARS-CoV-2 i dat pregled najvažnijih vakcina protiv COVID-19, sa akcentom na one vakcine koje su dostupne u Republici Srbiji, pri čemu će fokus biti na njihovoj imunogenosti, efikasnosti i bezbednosti kao i platformama na kojima su razvijene. Takođe, poseban osvrt će se dati otvorenim pitanjima u vezi sa imunizacijom protiv COVID-19, kao što su dužina trajanja postvakcinalnog imuniteta, stepen zaštite protiv novih varijanti virusa i potreba za revakcinacijom, odnosno davanjem treće doze i eventualnim kombinovanjem različitih vakcina.

Reference

1. World Health Organization: WHO Coronavirus (COVID-19) Dashboard. Dostupno na: https://covid19.who.int/ [Pristupljeno 23.7.2021]
2. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, et al. Structural insights into SARS-CoV-2 proteins. Journal of molecular biology. 2021;433(2):166725.
3. Kim YM, Shin EC. Type I and III interferon responses in SARS-CoV-2 infection. Experimental & molecular medicine. 2021;53(5):750-60.
4. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861-80.
5. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181(7):1489-501.e15.
6. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell. 2020;183(4):1024-42.e21.
7. McMahan K, Yu J, Mercado NB, Loos C, Tostanoski LH, Chandrashekar A, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021;590(7847):630-4.
8. Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang ML, et al. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. Journal of clinical microbiology. 2020;58(11).
9. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science (New York, NY). 2020;370(6522):1339-43.
10. Alfego D, Sullivan A, Poirier B, Williams J, Adcock D, Letovsky S. A population-based analysis of the longevity of SARS-CoV-2 antibody seropositivity in the United States. EClinicalMedicine. 2021;36:100902.
11. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;595(7867):421-5.
12. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (New York, NY). 2021;371(6529).
13. Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth to SARS-CoV-2 after one year. bioRxiv. 2021:2021.05.07.443175.
14. Jarjour NN, Masopust D, Jameson SC. T Cell Memory: Understanding COVID-19. Immunity. 2021;54(1):14-8.
15. Baumgarth N, Nikolich-Žugich J, Lee FE, Bhattacharya D. Antibody Responses to SARS-CoV-2: Let's Stick to Known Knowns. Journal of immunology (Baltimore, Md : 1950). 2020;205(9):2342-50.
16. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet (London, England). 2021;397(10283):1459-69.
17. Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet (London, England). 2021;397(10280):1204-12.
18. Subbarao K. The success of SARS-CoV-2 vaccines and challenges ahead. Cell host & microbe. 2021;29(7):1111-23.
19. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. The New England journal of medicine. 2021;384(23):2187-201.
20. Danas. Stručni komitet za imunizaciju: Preporuka da građani Srbije šest meseci posle druge, prime treću dozu i to RNK vakcine. Dostupno na: https://www.danas.rs/drustvo/preporuka-da-gradjani-srbije-sest-meseci-posle-druge-prime-trecu-dozu-i-to-rnk-vakcine/. [Pristupljeno 26.7.2021.]
21. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516-27.
22. Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Frontiers in immunology. 2018;9:1963.
23. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. The New England journal of medicine. 2020;382(21):1969-73.
24. Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020;52(4):583-9.
25. World Health Organization – Draft landscape and tracker of COVID-19 candidate vaccines. Dostupno na: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines [Pristupljeno 23.7.2021.]
26. Vaccine Centre at the London School of Hygiene & Tropical Medicine. Vaccine tracker. Dostupno na: https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/ [Pristupljeno 23.7.2021.]
27. World Health Organization. Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. Dostupno na: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_15July2021.pdf. [Pristupljeno 23.7.2021.]
28. Agencija za lekove i medicinska sredstva Srbije. Dostupno na: https://www.alims.gov.rs/. [Pristupljeno 23.7.2021.]
29. Radio Slobodna Evropa. Predsednik Srbije: Modernina vakcina stiže u oktobru. Dostupno na: https://www.slobodnaevropa.org/a/srbija-vucic-vakcina-moderna/31359862.html. [Pristupljeno 23.7.2021.]
30. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. The New England journal of medicine. 2021;384(5):403-16.
31. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine. 2020;383(27):2603-15.
32. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet (London, England). 2021;397(10275):671-81.
33. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet (London, England). 2021;396(10267):1979-93.
34. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (London, England). 2021;397(10269):99-111.
35. AZD1222 US Phase III primary analysis confirms safety and efficacy. Dostupno na: https://www.astrazeneca.com/media-centre/press-releases/2021/azd1222-us-phase-iii-primary-analysis-confirms-safety-and-efficacy.html. [Pristupljeno 23.7.2021.]
36. Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet (London, England). 2021;397(10277):881-91.
37. World Health Organization. AstraZeneca ChAdOx1-S/nCoV-19 [recombinant], COVID-19 vaccine. Dostupno na: https://www.who.int/publications/m/item/chadox1-s-recombinant-covid-19-vaccine. [Pristupljeno 23.7.2021.]
38. Single dose vaccine, Sputnik Light, authorized for use in Russia. Dostupno na: https://sputnikvaccine.com/newsroom/pressreleases/single-dose-vaccine-sputnik-light-authorized-for-use-in-russia/. [Pristupljeno 23.7.2021.]
39. Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. Jama. 2021;326(1):35-45.
40. Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell. 2020;182(3):713-21.e9.
41. World Health Organization. Interim recommendations for use of the inactivated COVID-19 vaccine BIBP developed by China National Biotec Group (CNBG), Sinopharm. Dostupno na: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-BIBP-2021.1. [Pristupljeno 23.7.2021.]
42. Krause P, Fleming TR, Longini I, Henao-Restrepo AM, Peto R. COVID-19 vaccine trials should seek worthwhile efficacy. Lancet (London, England). 2020;396(10253):741-3.
43. Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B, Charlett A, et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. Lancet (London, England). 2021;397(10286):1725-35.
44. Vasileiou E, Simpson CR, Shi T, Kerr S, Agrawal U, Akbari A, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. Lancet (London, England). 2021;397(10285):1646-57.
45. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. The New England journal of medicine. 2021;384(15):1412-23.
46. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet (London, England). 2021;397(10287):1819-29.
47. Menni C, Klaser K, May A, Polidori L, Capdevila J, Louca P, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. The Lancet Infectious diseases. 2021;21(7):939-49.
48. Thompson MG, Burgess JL, Naleway AL, Tyner HL, Yoon SK, Meece J, et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers - Eight U.S. Locations, December 2020-March 2021. MMWR Morbidity and mortality weekly report. 2021;70(13):495-500.
49. Levine-Tiefenbrun M, Yelin I, Katz R, Herzel E, Golan Z, Schreiber L, et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nature medicine. 2021;27(5):790-2.
50. The times of Israel. Israeli, UK data offer mixed signals on vaccine’s potency against Delta strain. Dostupno na: https://www.timesofisrael.com/israeli-uk-data-offer-mixed-signals-on-vaccines-potency-against-delta-strain/. [Pristupljeno 23.7.2021.]
51. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. The New England journal of medicine. 2021.
52. Reuters. Russia's Sputnik V vaccine 97.6% effective in real-world study. Dostupno na: https://www.reuters.com/article/health-coronavirus-russia-vaccine-idINL1N2MC1BG. [Pristupljeno 23.7.2021.]
53. Our World in Data. Coronavirus Pandemic (COVID-19). Dostupno na: https://ourworldindata.org/coronavirus. [Pristupljeno 23.7.2021.]
54. Klasse PJ, Nixon DF, Moore JP. Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. Science advances. 2021;7(12):eabe8065.
55. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589-93.
56. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. The Lancet Infectious diseases. 2021;21(1):39-51.
57. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet (London, England). 2020;396(10255):887-97.
58. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. The New England journal of medicine. 2020;383(20):1920-31.
59. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet (London, England). 2020;396(10249):467-78.
60. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature medicine. 2021;27(7):1205-11.
61. Jeewandara C, Aberathna IS, Pushpakumara PD, Kamaladasa A, Guruge D, Jayathilaka D, et al. Antibody and T cell responses to Sinopharm/BBIBP-CorV in naïve and previously infected individuals in Sri Lanka. medRxiv. 2021:2021.07.15.21260621.
62. Ebinger JE, Fert-Bober J, Printsev I, Wu M, Sun N, Prostko JC, et al. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nature medicine. 2021;27(6):981-4.
63. World Health Organization. Coronavirus disease (COVID-19): Vaccines safety. Dostupno na: https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines-safety. [Pristupljeno 23.7.2021.]
64. Centers for Disease Control and Prevention. Safety of COVID-19 Vaccines. Dostupno na: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/safety-of-vaccines.html. [Pristupljeno 23.7.2021.]
65. UK Government. Medicines & Healthcare products Regulatory Agency. Coronavirus vaccine - weekly summary of Yellow Card reporting . Dostupno na: https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronavirus-vaccine-summary-of-yellow-card-reporting. [Pristupljeno 23.7.2021.]
66. European Medicines Agency. Vaxzevria (previously COVID-19 Vaccine AstraZeneca). Dostupno na: https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca. [Pristupljeno 23.7.2021.]
67. Cines DB, Bussel JB. SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. The New England journal of medicine. 2021;384(23):2254-6.
68. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. The New England journal of medicine. 2021;384(22):2092-101.
69. World Health Oraganization. Global Advisory Committee on Vaccine Safety (GACVS) review of latest evidence of rare adverse blood coagulation events with AstraZeneca COVID-19 Vaccine (Vaxzevria and Covishield). Dostupno na: https://www.who.int/news/item/16-04-2021-global-advisory-committee-on-vaccine-safety-(gacvs)-review-of-latest-evidence-of-rare-adverse-blood-coagulation-events-with-astrazeneca-covid-19-vaccine-(vaxzevria-and-covishield). [Pristupljeno 23.7.2021.]
70. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.
71. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812-27.e19.
72. World Health Organization: COVID-19 Weekly Epidemiological Update, 25 February 2021 [updated 25 February 2021. Dostupno na: https://apps.who.int/iris/handle/10665/339859. [Pristupljeno 23.7.2021.]
73. World Health Organization: Tracking SARS-CoV-2 variants. Dostupno na: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. [Pristupljeno 23.7.2021.]
74. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nature medicine. 2021;27(4):622-5.
75. Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell host & microbe. 2021;29(7):1124-36.e11.
76. Fontanet A, Autran B, Lina B, Kieny MP, Karim SSA, Sridhar D. SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet (London, England). 2021;397(10278):952-4.
77. Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. The New England journal of medicine. 2021;385(2):187-9.
78. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. The New England journal of medicine. 2021;384(20):1885-98.
79. European Centre for Disease Prevention and Control. Assessing SARS-CoV-2 circulation, variants of concern, non-pharmaceutical interventions and vaccine rollout in the EU/EEA, 15th update – 10 June 2021. ECDC: Stockholm; 2021.
80. European Centre for Disease Prevention and Control. Implications for the EU/EEA on the spread of the SARSCoV-2 Delta (B.1.617.2) variant of concern - 23 June 2021. ECDC: Stockholm; 2021. .
81. Lustig Y, Zuckerman N, Nemet I, Atari N, Kliker L, Regev-Yochay G, et al. Neutralising capacity against Delta (B.1.617.2) and other variants of concern following Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in health care workers, Israel. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2021;26(26).
82. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021.
83. Krause PR, Fleming TR, Longini IM, Peto R, Briand S, Heymann DL, et al. SARS-CoV-2 Variants and Vaccines. The New England journal of medicine. 2021;385(2):179-86.
84. Doria-Rose N, Suthar MS, Makowski M, O'Connell S, McDermott AB, Flach B, et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. The New England journal of medicine. 2021;384(23):2259-61.
85. Pfizer and Biontech confirm high efficacy and no serious safety concerns through up to six months following second dose in updated topline analysis of landmark COVID-19 vaccine study. Dostupno na: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-confirm-high-efficacy-and-no-serious. [Pristupljeno 23.7.2021.]
86. Hacisuleyman E, Hale C, Saito Y, Blachere NE, Bergh M, Conlon EG, et al. Vaccine Breakthrough Infections with SARS-CoV-2 Variants. The New England journal of medicine. 2021;384(23):2212-8.
87. COVID-19 Vaccine Breakthrough Infections Reported to CDC - United States, January 1-April 30, 2021. MMWR Morbidity and mortality weekly report. 2021;70(21):792-3.
88. European Centre for Disease Prevention and Control. COVID-19 vaccine effectiveness - real-world evidence. Dostupno na: https://www.ecdc.europa.eu/en/covid-19/latest-evidence/vaccines. [Pristupljeno 23.7.2021.]
89. Centers for Disease Control and Prevention. COVID-19 Vaccine Breakthrough Case Investigation and Reporting. Dostupno na: https://www.cdc.gov/vaccines/covid-19/health-departments/breakthrough-cases.html. [Pristupljeno 23.7.2021.]
90. Callaway E. Mix-and-match COVID vaccines trigger potent immune response. Nature. 2021;593(7860):491.
91. Barros-Martins J, Hammerschmidt SI, Cossmann A, Odak I, Stankov MV, Morillas Ramos G, et al. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nature medicine. 2021. Online ahead of print. doi: 10.1038/s41591-021-01449-9.
92. Borobia AM, Carcas AJ, Pérez Olmeda, Teresa M, Castaño L, Jesús Bertrán M, et al. Reactogenicity and Immunogenicity of BNT162b2 in Subjects Having Received a First Dose of ChAdOx1s: Initial Results of a Randomised, Adaptive, Phase 2 Trial (CombiVacS). Dostupno na: SSRN: https://ssrn.com/abstract=3854768 ili http://dx.doi.org/10.2139/ssrn.3854768.
93. Shaw RH, Stuart A, Greenland M, Liu X, Nguyen Van-Tam JS, Snape MD. Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data. Lancet. 2021;397(10289):2043-6.
94. Liu X, Shaw RH, Stuart AS, Greenland M, Dinesh T, Provstgaard-Morys S, et al. Safety and Immunogenicity Report from the Com-COV Study – a Single-Blind Randomised Non-Inferiority Trial Comparing Heterologous And Homologous Prime-Boost Schedules with An Adenoviral Vectored and mRNA COVID-19 Vaccine. Dostupno na: SSRN: https://ssrn.com/abstract=3874014 ili http://dx.doi.org/10.2139/ssrn.3874014.
Objavljeno
2021/10/25
Rubrika
Pregledni članak