Revizija i poboljšanje nekih novih rezultata u F-metričkim prostorima

Ključne reči: F-metrički prostor, F-kontrakcija, fiksna tačka

Sažetak


Uvod/cilj: Ovaj rad uspostavlja nekoliko novih kontraktivnih uslova u kontekstu takozvanih F-metričkih prostora. Glavni cilj je generalizacija, proširenje, poboljšanje, dopuna i objedinjenje već dobijenih rezultata u postojećoj literaturi. Korišćeno je samo svojstvo (F1) Vardovskog, kao i jedna dobro poznata lema za dokaz da je Pikarov niz F-Košijev u okviru F-metričkog prostora. 

Metode: Korišćene su metode metričke teorije fiksne tačke.

Rezultati: Objavljeni su novi rezultati u vezi sa F-kontrakcijama za dva preslikavanja u okviru F-kompletnih F-metričkih prostora.

Zaključak: Dobijeni rezultati predstavljaju značajna poboljšanja, kao i pravu generalizaciju nekih nedavno objavljenih rezultata, što pokazuje primer naveden na kraju rada.

Reference

Asif, A., Nazam, M., Arshad, M. & Kim, S.O. 2019. F-Metric, F-contraction and Common Fixed-Point Theorems with Applications. Mathematics, 7(7), 586. Available at: https://doi.org/10.3390/math7070586.

Aydi, H., Karapinar, E., Mitrović, Z.D. & Rashid, T. 2019. A remark on ”Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results F-metric spaces”. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matemáticas (RACSAM), 113, pp.3197-3206. Available at: https://doi.org/10.1007/s13398-019-00690-9.

Bakhtin, I.A. 1989. The contraction mapping principle in quasimetric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, pp.26-37.

Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: https://doi.org/10.4064/fm-3-1-133-181.

Collaco, P. & Silva, J.C.E. 1997. A complete comparison of 25 contraction conditions. Nonlinear Analysis: Theory, Methods & Applications, 30(1), pp.471-476. Available at: https://doi.org/10.1016/S0362-546X(97)00353-2.

Consentino, M. & Vetro, P. 2014. Fixed point result for F-contractive mappings of Hardy-Rogers-Type. Filomat, 28(4), pp.715-722. Available at: https://doi.org/10.2298/FIL1404715C.

Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1, pp.5-11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 20 November 2020].

Ćirić, Lj. 2003. Some Recent Results in Metrical Fixed Point Theory. Belgrade: University of Belgrade.

Derouiche, D. & Ramoul, H. 2020. New fixed point results for F-contractions of Hardy-Rogers type in b-metric spaces with applications. Journal of Fixed Point Theory and Applications, 22(art.number:86). Available at: https://doi.org/10.1007/s11784-020-00822-4.

Dey, L.K., Kumam, P. & Senapati, T. 2019. Fixed point results concerning α F contraction mappings in metric spaces. Applied General Topology, 20(1), pp.81-95. Available at: https://doi.org/10.4995/agt.2019.9949.

Jahangir, F., Haghmaram, P. & Nourouzi, K. 2021. A note on F-metric spaces. Journal of Fixed Point Theory and Applications, 23(art.number:2). Available at: https://doi.org/10.1007/s11784-020-00836-y.

Jleli, M. & Samet, B. 2018. On a new generalization of metric spaces. Journal of Fixed Point Theory and Applications, 20(art.number:128). Available at: https://doi.org/10.1007/s11784-018-0606-6.

Karapınar, E., Fulga, A. & Agarwal, R. 2020. A survey: F-contractions with related fixed point results. Journal of Fixed Point Theory and Applications, 22(art.number:69). Available at: https://doi.org/10.1007/s11784-020-00803-7.

Kirk, W.A. & Shahzad, N. 2014. Fixed Point Theory in Distance Spaces. Springer International Publishing Switzerland.

Mitrović, Z.D., Aydi, H., Hussain, H. & Mukheimer, A. 2019. Reich, Jumgck, and Berinde comon fixed point results on F-metric spaces and an application. Mathematics, 7(5), 387. Available at: https://doi.org/10.3390/math7050387.

Piri, H. & Kumam, P. 2014. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory and Applications, art.number:210. Available at: https://doi.org/10.1186/1687-1812-2014-210.

Rhoades, B.E. 1977. A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc., 226, pp.257-290. Available at: https://doi.org/10.1090/S0002-9947-1977-0433430-4.

Saleem, N., Iqbal, I., Iqbal, B. & Radenović, S. 2020. Coincidence and fixed points of multivalued F-contractions in generalized metric space with applications. Journal of Fixed Point Theory and Applications, 22(art.number:81). Available at: https://doi.org/10.1007/s11784-020-00815-3.

Som, S., Bera, A. & Dey, L.K. 2020. Some remarks on the metrizability of F-metric spaces. Journal of Fixed Point Theory and Applications, 22(art.number:17). Available at: https://doi.org/10.1007/s11784-019-0753-4.

Vujaković, J., Mitrović, S., Pavlović, M. & Radenović, S. 2020. On recent results concerning F-contraction in generalized metric spaces. Mathematics, 8(5), 767. Available at: https://doi.org/10.3390/math8050767.

Vujaković, J. & Radenović, S. 2020. On some F-contraction of Piri-Kumam- Dung type mappings in metric spaces. Vojnotehnički glasnik/Military Technical Courier, 68(4), pp.697-714. Available at: https://doi.org/10.5937/vojtehg68-27385.

Wardowski, D. 2012. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications, art.number:94. Available at: https://doi.org/10.1186/1687-1812-2012-94.

Wardowski, D. & Van Dung, N. 2014. Fixed points of F-weak contractions on complete metric spaces. Demonstratio Mathematica, 47(1), pp.146-155. Available at: https://doi.org/10.2478/dema-2014-0012.

Younis, M., Singh, D. & Goyal, A. 2019a. A novel approach of graphical rectangular b-metric spaces with an application to the vibrations of a vertical heavy hanging cable. Journal of Fixed Point Theory and Applications, 21(art.number:33). Available at: https://doi.org/10.1007/s11784-019-0673-3.

Younis, M., Singh, D. & Petrusel, A. 2019b. Applications of Graph Kannan Mappings to the Damped Spring-Mass System and Deformation of an Elastic Beam. Discrete Dynamics in Nature and Society, art.ID:1315387. Available at: https://doi.org/10.1155/2019/1315387.

Objavljeno
2021/03/22
Rubrika
Originalni naučni radovi