Revisiting and revamping some novel results in F-metric spaces

Keywords: F-metric space, F-contraction, fixed point

Abstract


Introduction/purpose: This article establishes several new contractive conditions in the context of so-called F-metric spaces. The main purpose was to generalize, extend, improve, complement, unify and enrich the already published results in the existing literature. We used only the property (F1) of Wardowski as well as one well–known lemma for the proof that Picard sequence is an F-Cauchy in the framework of F-metric space.

Methods: Fixed point metric theory methods were used.

Results: New results are enunciated concerning the F-contraction of two mappings S and T in the context of F−complete F-metric spaces.

Conclusions: The obtained results represent sharp and significant improvements of some recently published ones. At the end of the paper, an example is given, claiming that the results presented in this paper are proper generalizations of recent developments.

References

Asif, A., Nazam, M., Arshad, M. & Kim, S.O. 2019. F-Metric, F-contraction and Common Fixed-Point Theorems with Applications. Mathematics, 7(7), 586. Available at: https://doi.org/10.3390/math7070586.

Aydi, H., Karapinar, E., Mitrović, Z.D. & Rashid, T. 2019. A remark on ”Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results F-metric spaces”. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matemáticas (RACSAM), 113, pp.3197-3206. Available at: https://doi.org/10.1007/s13398-019-00690-9.

Bakhtin, I.A. 1989. The contraction mapping principle in quasimetric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, pp.26-37.

Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: https://doi.org/10.4064/fm-3-1-133-181.

Collaco, P. & Silva, J.C.E. 1997. A complete comparison of 25 contraction conditions. Nonlinear Analysis: Theory, Methods & Applications, 30(1), pp.471-476. Available at: https://doi.org/10.1016/S0362-546X(97)00353-2.

Consentino, M. & Vetro, P. 2014. Fixed point result for F-contractive mappings of Hardy-Rogers-Type. Filomat, 28(4), pp.715-722. Available at: https://doi.org/10.2298/FIL1404715C.

Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1, pp.5-11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 20 November 2020].

Ćirić, Lj. 2003. Some Recent Results in Metrical Fixed Point Theory. Belgrade: University of Belgrade.

Derouiche, D. & Ramoul, H. 2020. New fixed point results for F-contractions of Hardy-Rogers type in b-metric spaces with applications. Journal of Fixed Point Theory and Applications, 22(art.number:86). Available at: https://doi.org/10.1007/s11784-020-00822-4.

Dey, L.K., Kumam, P. & Senapati, T. 2019. Fixed point results concerning α F contraction mappings in metric spaces. Applied General Topology, 20(1), pp.81-95. Available at: https://doi.org/10.4995/agt.2019.9949.

Jahangir, F., Haghmaram, P. & Nourouzi, K. 2021. A note on F-metric spaces. Journal of Fixed Point Theory and Applications, 23(art.number:2). Available at: https://doi.org/10.1007/s11784-020-00836-y.

Jleli, M. & Samet, B. 2018. On a new generalization of metric spaces. Journal of Fixed Point Theory and Applications, 20(art.number:128). Available at: https://doi.org/10.1007/s11784-018-0606-6.

Karapınar, E., Fulga, A. & Agarwal, R. 2020. A survey: F-contractions with related fixed point results. Journal of Fixed Point Theory and Applications, 22(art.number:69). Available at: https://doi.org/10.1007/s11784-020-00803-7.

Kirk, W.A. & Shahzad, N. 2014. Fixed Point Theory in Distance Spaces. Springer International Publishing Switzerland.

Mitrović, Z.D., Aydi, H., Hussain, H. & Mukheimer, A. 2019. Reich, Jumgck, and Berinde comon fixed point results on F-metric spaces and an application. Mathematics, 7(5), 387. Available at: https://doi.org/10.3390/math7050387.

Piri, H. & Kumam, P. 2014. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory and Applications, art.number:210. Available at: https://doi.org/10.1186/1687-1812-2014-210.

Rhoades, B.E. 1977. A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc., 226, pp.257-290. Available at: https://doi.org/10.1090/S0002-9947-1977-0433430-4.

Saleem, N., Iqbal, I., Iqbal, B. & Radenović, S. 2020. Coincidence and fixed points of multivalued F-contractions in generalized metric space with applications. Journal of Fixed Point Theory and Applications, 22(art.number:81). Available at: https://doi.org/10.1007/s11784-020-00815-3.

Som, S., Bera, A. & Dey, L.K. 2020. Some remarks on the metrizability of F-metric spaces. Journal of Fixed Point Theory and Applications, 22(art.number:17). Available at: https://doi.org/10.1007/s11784-019-0753-4.

Vujaković, J., Mitrović, S., Pavlović, M. & Radenović, S. 2020. On recent results concerning F-contraction in generalized metric spaces. Mathematics, 8(5), 767. Available at: https://doi.org/10.3390/math8050767.

Vujaković, J. & Radenović, S. 2020. On some F-contraction of Piri-Kumam- Dung type mappings in metric spaces. Vojnotehnički glasnik/Military Technical Courier, 68(4), pp.697-714. Available at: https://doi.org/10.5937/vojtehg68-27385.

Wardowski, D. 2012. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications, art.number:94. Available at: https://doi.org/10.1186/1687-1812-2012-94.

Wardowski, D. & Van Dung, N. 2014. Fixed points of F-weak contractions on complete metric spaces. Demonstratio Mathematica, 47(1), pp.146-155. Available at: https://doi.org/10.2478/dema-2014-0012.

Younis, M., Singh, D. & Goyal, A. 2019a. A novel approach of graphical rectangular b-metric spaces with an application to the vibrations of a vertical heavy hanging cable. Journal of Fixed Point Theory and Applications, 21(art.number:33). Available at: https://doi.org/10.1007/s11784-019-0673-3.

Younis, M., Singh, D. & Petrusel, A. 2019b. Applications of Graph Kannan Mappings to the Damped Spring-Mass System and Deformation of an Elastic Beam. Discrete Dynamics in Nature and Society, art.ID:1315387. Available at: https://doi.org/10.1155/2019/1315387.

Published
2021/03/22
Section
Original Scientific Papers