Spektar i energija somborske matrice

Ključne reči: somborska matrica, somborska energija, somborski indeks, invarijante zavisne od stepena čvorova, spektar (matrice)

Sažetak


Uvod/cilj: Somborska matrica zavisna je od stepena čvorova, a izvedena je iz somborskog indeksa. U radu su prikazane neke njene spektralne osobine.

Rezultati: Dobijene su jednakosti i nejednakosti za sopstvene vrednosti somborske matrice. Iz njih su izvedene dve fundamentalne granice za somborsku energiju (energija somborske matrice). Ove granice zavise od somborskog indeksa, kao i od takozvanog „zaboravljenog” topološkog indeksa.

Zaključak: Rezultati izloženi u radu predstavljaju doprinos spektralnoj teoriji somborske matrice, kao i opštoj teoriji spektara matrica zavisnih od stepena čvorova.

Ključne reči: Somborska matrica, somborska energija, somborski indeks, invarijante zavisne od stepena čvorova, spektar (matrice).

Biografija autora

Ivan Gutman, Univerzitet u Kragujevcu, Prirodno-matematički fakultet, Kragujevac, Republika Srbija

Reference

Alikhani, S. & Ghanbari, N. 2021. Sombor index of polymers. MATCH Communications in Mathematical and in Computer Chemistry, 86, pp.715-728.

Bondy, J. A. & Murty, U.S.R. 1976. Graph Theory with Applications. New York: Macmillan Press. ISBN: 0-444-19451-7.

Cruz, R. &, Rada, J. 2021. Extremal values of the Sombor index in unicyclic and bicyclic graphs. Journal of Mathematical Chemistry, 59, pp.1098-1116. Available at: https://doi.org/10.1007/s10910-021-01232-8.

Cvetković, D., Rowlinson, P. & Simić, K. 2010. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press. ISBN: 9780521134088.

Das, K.C., Gutman, I., Milovanović, I., Milovanović, E. & Furtula, B. 2018. Degree-based energies of graphs. Linear Algebra and its Applications, 554, pp.185-204. Available at: https://doi.org/10.1016/j.laa.2018.05.027.

Došlić, T., Reti, T. & Ali, A. 2021. On the structure of graphs with integer Sombor indices. Discrete Mathematics Letters, 7, pp.1-4. Available at: https://doi.org/10.47443/dml.2021.0012.

Furtula, B. & Gutman, I. 2015. A forgotten topological index. Journal of Mathematical Chemistry, 53, pp.1184-1190. Available at: https://doi.org/10.1007/s10910-015-0480-z.

Gutman, I. 2021. Geometric approach to degree-based topological indices: Sombor indices. MATCH Communications in Mathematical and in Computer Chemistry, 86, pp.11-16.

Harary, F. 1969. Graph Theory. Reading: Addison—Wesley. ISBN: 9780201410334.

Horoldagva, B. & Xu, C. 2021. On Sombor index of graphs. MATCH Communications in Mathematical and in Computer Chemistry, 86, pp.793-713.

Koolen, J. & Moulton, V. 2001. Maximal energy graphs. Advances in Applied Mathematics, 26(1), pp.47-52. Available at: https://doi.org/10.1006/aama.2000.0705.

Koolen, J. & Moulton, V. 2003. Maximal energy bipartite graphs. Graphs and Combinatorics, 19, pp.131-135. Available at: https://doi.org/10.1007/s00373-002-0487-7.

Kulli, V.R. 2020. Graph indices. In: Pal, M., Samanta, S. & Pal, A. (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, pp.66-91. Hershey, USA: IGI Global. Available at: https://doi.org/10.4018/978-1-5225-9380-5.ch003.

Kulli, V.R. 2021. Sombor index of certain graph operators. International Journal of Engineering Sciences & Research Technology, 10(1), pp.127-134. Available at: https://doi.org/10.29121/ijesrt.v10.i1.2021.12.

Li, X., Shi, Y. & Gutman, I. 2012. Introduction. In: Graph Energy, pp.1-9. New York, NY: Springer Science and Business Media LLC. Available at: https://doi.org/10.1007/978-1-4614-4220-2_1.

Li, X. & Wang, Z. 2021. Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices. Linear Algebra and Its Applications, 620, pp.61-75. Available at: https://doi.org/10.1016/j.laa.2021.02.023.

McClelland, B.J. 1971. Properties of the latent roots of a matrix: The estimation of π-electron energies. Journal of Chemical Physics, 54(2), pp.640-643. Available at: https://doi.org/10.1063/1.1674889.

Shao, Y., Gao, Y., Gao, W. & Zhao, X. 2021. Degree-based energies of trees. Linear Algebra and Its Applications, 621, pp.18-28. Available at: https://doi.org/10.1016/j.laa.2021.03.009.

Todeschini, R. & Consonni, V. 2009. Molecular Descriptors for Chemoinformatics. Weinheim: Wiley-VCH. ISBN: 978-3-527-31852-0.

Objavljeno
2021/06/23
Rubrika
Originalni naučni radovi