Spectrum and energy of the Sombor matrix

Keywords: Sombor matrix, Sombor energy, Sombor index, vertex-degree-based graph invariant, spectrum (of matrix)

Abstract


Introduction/purpose: The Sombor matrix is a vertex-degree-based matrix associated with the Sombor index. The paper is concerned with the spectral properties of the Sombor matrix.

Results: Equalities and inequalities for the eigenvalues of the Sombor matrix are obtained, from which two fundamental bounds for the Sombor energy  (= energy of the Sombor matrix) are established. These bounds depend on the Sombor index and on the „forgotten“ topological index.

Conclusion: The results of the paper contribute to the spectral theory of the Sombor matrix, as well as to the general spectral theory of matrices associated with vertex-degree-based graph invariants.

Author Biography

Ivan Gutman, University of Kragujevac, Faculty of Science, Kragujevac, Republic of Serbia

References

Alikhani, S. & Ghanbari, N. 2021. Sombor index of polymers. MATCH Communications in Mathematical and in Computer Chemistry, 86, pp.715-728.

Bondy, J. A. & Murty, U.S.R. 1976. Graph Theory with Applications. New York: Macmillan Press. ISBN: 0-444-19451-7.

Cruz, R. &, Rada, J. 2021. Extremal values of the Sombor index in unicyclic and bicyclic graphs. Journal of Mathematical Chemistry, 59, pp.1098-1116. Available at: https://doi.org/10.1007/s10910-021-01232-8.

Cvetković, D., Rowlinson, P. & Simić, K. 2010. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press. ISBN: 9780521134088.

Das, K.C., Gutman, I., Milovanović, I., Milovanović, E. & Furtula, B. 2018. Degree-based energies of graphs. Linear Algebra and its Applications, 554, pp.185-204. Available at: https://doi.org/10.1016/j.laa.2018.05.027.

Došlić, T., Reti, T. & Ali, A. 2021. On the structure of graphs with integer Sombor indices. Discrete Mathematics Letters, 7, pp.1-4. Available at: https://doi.org/10.47443/dml.2021.0012.

Furtula, B. & Gutman, I. 2015. A forgotten topological index. Journal of Mathematical Chemistry, 53, pp.1184-1190. Available at: https://doi.org/10.1007/s10910-015-0480-z.

Gutman, I. 2021. Geometric approach to degree-based topological indices: Sombor indices. MATCH Communications in Mathematical and in Computer Chemistry, 86, pp.11-16.

Harary, F. 1969. Graph Theory. Reading: Addison—Wesley. ISBN: 9780201410334.

Horoldagva, B. & Xu, C. 2021. On Sombor index of graphs. MATCH Communications in Mathematical and in Computer Chemistry, 86, pp.793-713.

Koolen, J. & Moulton, V. 2001. Maximal energy graphs. Advances in Applied Mathematics, 26(1), pp.47-52. Available at: https://doi.org/10.1006/aama.2000.0705.

Koolen, J. & Moulton, V. 2003. Maximal energy bipartite graphs. Graphs and Combinatorics, 19, pp.131-135. Available at: https://doi.org/10.1007/s00373-002-0487-7.

Kulli, V.R. 2020. Graph indices. In: Pal, M., Samanta, S. & Pal, A. (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, pp.66-91. Hershey, USA: IGI Global. Available at: https://doi.org/10.4018/978-1-5225-9380-5.ch003.

Kulli, V.R. 2021. Sombor index of certain graph operators. International Journal of Engineering Sciences & Research Technology, 10(1), pp.127-134. Available at: https://doi.org/10.29121/ijesrt.v10.i1.2021.12.

Li, X., Shi, Y. & Gutman, I. 2012. Introduction. In: Graph Energy, pp.1-9. New York, NY: Springer Science and Business Media LLC. Available at: https://doi.org/10.1007/978-1-4614-4220-2_1.

Li, X. & Wang, Z. 2021. Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices. Linear Algebra and Its Applications, 620, pp.61-75. Available at: https://doi.org/10.1016/j.laa.2021.02.023.

McClelland, B.J. 1971. Properties of the latent roots of a matrix: The estimation of π-electron energies. Journal of Chemical Physics, 54(2), pp.640-643. Available at: https://doi.org/10.1063/1.1674889.

Shao, Y., Gao, Y., Gao, W. & Zhao, X. 2021. Degree-based energies of trees. Linear Algebra and Its Applications, 621, pp.18-28. Available at: https://doi.org/10.1016/j.laa.2021.03.009.

Todeschini, R. & Consonni, V. 2009. Molecular Descriptors for Chemoinformatics. Weinheim: Wiley-VCH. ISBN: 978-3-527-31852-0.

Published
2021/06/23
Section
Original Scientific Papers