Sprašene ljušture rečnih školjki kao jeftini adsorbent za uklanjanje malationa iz vode: ispitivanje izotermi, kinetike, termodinamike i optimizacija eksperimentalnih uslova metodom odzivnih površina

Ključne reči: uklanjanje, adsorbent, kinetika, izoterme, optimizacija, pesticidi, voda, rečne školjke

Sažetak


Uvod/cilj: U ovom istraživanju ispitivane su mogućnosti uklanjanja organofosfornog pesticida malationa iz vode pomoću novih adsorbenata na bazi biootpada rečnih školjki iz porodice Anodonta Sinadonta woodiane, materijala koji se u velikim količinama nakuplja kao otpad na obalama velikih reka.

Metode: Sintetisana su dva adsorbenta: mehanički usitnjena rečna školjka (MRM) i hidroksiapatit dobijen mehanosintezom iz usitnjenih rečnih školjki (RMHAp). Dobijeni adsorbenti su okarakterisani (elementarna analiza, skenirajuća elektronska mikroskopija – SEM, elektrodisperzivna spektroskopija – EDS, rendgenska difrakciona analiza – HRD, Furijeva transformacija IR zraka – FTIR) i ispitani u šaržnom sistemu za uklanjanje organofosfornog pesticida malationa iz vode. Optimizacija uslova adsorpcije izvršena je metodom odzivnih površina – RSM, gde je ispitan uticaj promenljivih faktora (uslova adsorpcije), pH vrednosti, doze adsorbenta, vremena kontakta i temperature na kapacitet adsorbenta.

Rezultati: Najbolja adsorpcija malationa postignuta je pri srednjim pH vrednostima između 6,0 i 7,0. Maksimalni Langmuirov kapacitet adsorpcije za MRM i RMHAp na 25°C iznosio je 46,462 mg g-1 i 78,311 mg g-1, redom. Rezultati su pokazali da adsorpcija malationa na oba adsorbenta sledi pseudodrugi kinetički model i Frojndlihov izotermni model. Termodinamički parametri ukazuju na endotermnu, spontanu i izvodljivu prirodu procesa adsorpcije.

Zaključak: U toku istraživanja dobijen je jeftin biokompatibilni adsorbent sa odličnim adsorpcionim karakteristikama prema malationu. Korišćenje otpada od školjki vrlo je korisno: jer otpad koji opterećuje obale različitih vodotokova uklanja zagađivače koji opterećuju vodu i izazivaju negativne efekte na životnu sredinu uopšte.

Biografija autora

Zlate S. Veličković, Univerzitet odbrane u Beogradu, Vojna akademija, Katedra vojnohemijskog inženjerstva, Beograd, Republika Srbija

Srbija

Reference

Bajić, Z.J., Djokić, V.R., Veličković, Z.S., Vuruna, M.M., Ristić, M.Đ., Issa, N.B. & Marinković, A.D. 2013. Equilibrium, kinetic аnd thermodynamic studies on removal of Cd(II), Pb(II) and As(V) from wastewater using carp (Cyprinus Carpio) scales. Digest Journal of Nanomaterials and Biostructures, 8(4), pp.1581-1590 [online]. Available at: https://chalcogen.ro/1581_Bajic.pdf [Accessed: 15 June 2021].

Bajić, Z.J., Pamučar, D.S., Bogdanov, J.Đ., Bučko, M.M. & Veličković, Z.S. 2019. Optimization of arsenite adsorption on hydroxy apatite based adsorbent using adaptive neuro-fuzzy inference system. Vojnotehnički glasnik/Military Technical Courier, 67(4), pp.735-752. Available at: https://doi.org/10.5937/vojtehg67-21519.

Bouchard, M., Gosselin, N.H., Brunet, R.C., Samuel, O., Dumoulin, M-J. & Carrier, G. 2003. A toxicokinetic model of malathion and its metabolites as a tool to assess human exposure and risk through measurements of urinary biomarkers. Toxicological Sciences, 73(1), pp.182-194. Available at: https://doi.org/10.1093/toxsci/kfg061.

Bouchenafa-Saïb, N., Mekarzia, A., Bouzid, B., Mohammedi, O., Khelifa, A., Benrachedi, K. & Belhaneche, N. 2014. Removal of malathion from polluted water by adsorption onto chemically activated carbons produced from coffee grounds. Desalination and Water Treatment, 52(25-27), pp.4920-4927. Available at: https://doi.org/10.1080/19443994.2013.808845.

Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P. & Trongyong S. 2013. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. The Scientific World Journal, 2013(art.ID:460923). Available at: https://doi.org/10.1155/2013/460923.

Budimirović, D., Veličković, Z.S., Djokić, V.R., Milosavljević, M., Markovski, J., Lević, S. & Marinković, A.D. 2017. Efficient As(V) removal by -FeOOH and -FeOOH/-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes. Chemical Engineering Research and Design, 119, pp.75-86. Available at: https://doi.org/10.1016/j.cherd.2017.01.010.

Chatterjee, S., Das, S.K., Chakravarty, R., Chakrabarti, A., Ghosh, S. & Guha, A.K. 2010. Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Journal of Hazardous Materials, 174(1-3), pp.47-53. Available at: https://doi.org/10.1016/j.jhazmat.2009.09.014.

Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu J. 2009. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. Journal of Hazardous Materials, 167(1-3), pp.357-365. Available at: https://doi.org/10.1016/j.jhazmat.2009.01.050.

Hameed, B.H., Salman, J.M. & Ahmad, A.L. 2009. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials, 163(1), pp.121-126. Available at: https://doi.org/10.1016/j.jhazmat.2008.06.069.

Islam, K.N., Ali, M.E., Bakar, M.Z., Loqman, M.Y., Islam, A., Islam, M.S., Rahman, M.M. & Ullah, M. 2013. A novel catalytic method for the synthesis of spherical aragonite nanoparticles from cockle shells. Powder Technology, 246, pp.434-440. Available at: https://doi.org/10.1016/j.powtec.2013.05.046.

Kamga, F.T. 2019. Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Applied Water Science, 9(art.number:1). Available at: https://doi.org/10.1007/s13201-018-0879-3.

Karanac, M., Ðolić, M., Veljović, Ð., Rajaković-Ognjanović, V., Veličković, Z., Pavićević, V. & Marinković A. 2018. The removal of Zn2+, Pb2+, and As(V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Management, 78, pp.366-378. Available at: https://doi.org/10.1016/j.wasman.2018.05.052.

Khiri, M.Z.A., Matori, K.A., Zainuddin, N., Abdullah, C.A.C., Alassan, Z.N., Baharuddin, N.F. & Zaid M.H.M. 2016. The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature. SpringerPlus, 5(art.number: 1206). Available at: https://doi.org/10.1186/s40064-016-2824-y.

Krzeminska, M., Kuklinski, P., Najorka, J. & Iglikowska, A. 2016. Skeletal Mineralogy Patterns of Antarctic Bryozoa. Journal of Geology, 124(3). Available at: https://doi.org/10.1086/685507.

Kuklinski, P. & Taylor P.D. 2009. Mineralogy of Arctic bryozoan skeletons in a global context. Facies, 55, pp.489-500. Available at: https://doi.org/10.1007/s10347-009-0179-3.

Ohno, K., Minami, T., Matsui, Y. & Magara, Y. 2008. Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: desorption and oxon formation. Water Research, 42(6-7), pp.1753-1759. Available at: https://doi.org/10.1016/j.watres.2007.10.040.

Pantić, K., Bajić, Z.J., Veličković, Z.S., Djokić, V., Rusmirović, J., Marinković, A. & Perić-Grujić, A. 2019. Adsorption performances of branched aminated waste polyacrylonitrile fibers: experimental versus modelling study. Desalination and Water Treatment, 171, pp.223-249. Available at: https://doi.org/10.5004/dwt.2019.24758.

Perendija, J., Veličković, Z.S., Cvijetić, I., Lević, S., Marinković, A., Milošević, M. & Onjia, A. 2021. Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. Process Safety and Environmental Protection, 147, pp.609-625. Available at: https://doi.org/10.1016/j.psep.2020.12.027.

Ramajo, L., Rodriguez-Navarro, A.B., Duarte, C.M., Lardies, M.A. & Lagos, N.A. 2015. Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Marine and Freshwater Research, 66(12), pp.1147-1157. Available at: https://doi.org/10.1071/MF14232.

Salma, K., Berzina-Cimdina, L. & Borodajenko, N. 2010. Calcium phosphate bioceramics prepared from wet chemically precipitated powders. Processing and Application of Ceramics, 4(1), pp.45-51. Available at: https://doi.org/10.2298/PAC1001045S.

Singh, V.K., Singh, R.S., Tiwari, P.N., Singh, J.K., Gode, F. & Sharma, Y.C. 2010. Removal of Malathion from Aqueous Solutions and Waste Water Using Fly Ash. Journal of Water Resource and Protection, 2(4), pp.322-330. Available at: https://doi.org/10.4236/jwarp.2010.24037.

Skwarek, E., Janusz, W. & Sternik, D. 2014. Adsorption of citrate ions on hydroxyapatite synthetized by various methods. Journal of Radioanalytical and Nuclear Chemistry, 299, pp.2027-2036 Available at: https://doi.org/10.1007/s10967-013-2825-z.

Stevanović, M., Bajić, Z.J., Veličković, Z.S., Karkalić, R., Pecić, Lj., Otrisal, P.& Marinković, A. 2020. Adsorption performances and antimicrobial activity of the nanosilver modified montmorillonite clay. Desalination and Water Treatment, 187, pp.345-369. Available at: http://dx.doi.org/10.5004/dwt.2020.25451

Taleb, K., Markovski, J., Milosavljević, M., Marinović-Cincović, M., Rusmirović, J., Ristić, M. & Marinković, A., 2015. Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: material performance. Chemical Engineering Journal, 279, pp.66-78. Available at: https://doi.org/10.1016/j.cej.2015.04.147.

Taleb, K., Markovski, J., Veličković, Z., Rusmirović, J., Rančić, M., Pavlović, V. & Marinković, A. 2019. Arsenic removal by magnetite-loaded aminomodified nano/microcellulose adsorbents: Effect of functionalization and media size. Arabian Journal of Chemistry, 12(8), pp.4675-4693. Available at: https://doi.org/10.1016/j.arabjc.2016.08.006.

Wei, D., Zhang, H., Cai, L., Guo, J., Wang, Y., Ji, L. & Song, W. 2018. Calcined Mussel Shell Powder (CMSP) via Modification with Surfactants: Application for Antistatic Oil-Removal. Materials, 11(8), 1410. Available at: https://doi.org/10.3390/ma11081410.

Objavljeno
2021/10/28
Rubrika
Originalni naučni radovi