Pulverized river shellfish shells as a cheap adsorbent for removing of malathion from water: examination of the isotherms, kinetics, thermodynamics and optimization of the experimental conditions by the response surface method

Keywords: removal, adsorbent, kinetics, isotherms, optimization, pesticide, water, river shells

Abstract


Introduction/purpose: In this study, we investigated the possibility of removing the organophosphorus pesticide malathion from water using a new adsorbent based on the biowaste of river shell shards from the Anodonta Sinadonta woodiane family, a material that accumulates in large quantities as waste on the banks of large rivers. Two adsorbents were tested - mechanically comminuted river shells (MRM) and mechanosynthetic hydroxyapatite from comminuted river shells (RMHAp).

Methods: The obtained adsorbents were characterized and tested for the removal of the organophosphorus pesticide malathion from water. In order to predict the optimal adsorption conditions using the Response Surface Method (RSM), the authors investigated the influence of variable factors (adsorption conditions), pH values, adsorbent doses, contact times, and temperatures on the adsorbent capacity.

Results: The best adsorption of malathion was achieved at mean pH values between 6.0 and 7.0. The adsorption data for malathion at 25, 35, and 45 °C were compared using the Langmuir, Freundlich, Dubinin-Radushkevich (DR), and Temkin isothermal models, as well as pseudo-first order, pseudo-second order and Elovic kinetic models for modeling adsorption kinetics. The maximum Langmuir adsorption capacity for MRM and RMHAp at 25 °C was 46,462 mg g-1 and 78,311 mg g-1, respectively.

Conclusion: The results have showed that malathion adsorption on both adsorbents follows the pseudo-second kinetic model and the Freundlich isothermal model. The thermodynamic parameters indicate the endothermic, feasible, and spontaneous nature of the adsorption process.

Author Biography

Zlate S. Veličković, University of Defence in Belgrade, Military Academy, Department for Military Chemical Engineering, Belgrade, Republic of Serbia

Srbija

References

Bajić, Z.J., Djokić, V.R., Veličković, Z.S., Vuruna, M.M., Ristić, M.Đ., Issa, N.B. & Marinković, A.D. 2013. Equilibrium, kinetic аnd thermodynamic studies on removal of Cd(II), Pb(II) and As(V) from wastewater using carp (Cyprinus Carpio) scales. Digest Journal of Nanomaterials and Biostructures, 8(4), pp.1581-1590 [online]. Available at: https://chalcogen.ro/1581_Bajic.pdf [Accessed: 15 June 2021].

Bajić, Z.J., Pamučar, D.S., Bogdanov, J.Đ., Bučko, M.M. & Veličković, Z.S. 2019. Optimization of arsenite adsorption on hydroxy apatite based adsorbent using adaptive neuro-fuzzy inference system. Vojnotehnički glasnik/Military Technical Courier, 67(4), pp.735-752. Available at: https://doi.org/10.5937/vojtehg67-21519.

Bouchard, M., Gosselin, N.H., Brunet, R.C., Samuel, O., Dumoulin, M-J. & Carrier, G. 2003. A toxicokinetic model of malathion and its metabolites as a tool to assess human exposure and risk through measurements of urinary biomarkers. Toxicological Sciences, 73(1), pp.182-194. Available at: https://doi.org/10.1093/toxsci/kfg061.

Bouchenafa-Saïb, N., Mekarzia, A., Bouzid, B., Mohammedi, O., Khelifa, A., Benrachedi, K. & Belhaneche, N. 2014. Removal of malathion from polluted water by adsorption onto chemically activated carbons produced from coffee grounds. Desalination and Water Treatment, 52(25-27), pp.4920-4927. Available at: https://doi.org/10.1080/19443994.2013.808845.

Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P. & Trongyong S. 2013. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. The Scientific World Journal, 2013(art.ID:460923). Available at: https://doi.org/10.1155/2013/460923.

Budimirović, D., Veličković, Z.S., Djokić, V.R., Milosavljević, M., Markovski, J., Lević, S. & Marinković, A.D. 2017. Efficient As(V) removal by -FeOOH and -FeOOH/-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes. Chemical Engineering Research and Design, 119, pp.75-86. Available at: https://doi.org/10.1016/j.cherd.2017.01.010.

Chatterjee, S., Das, S.K., Chakravarty, R., Chakrabarti, A., Ghosh, S. & Guha, A.K. 2010. Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Journal of Hazardous Materials, 174(1-3), pp.47-53. Available at: https://doi.org/10.1016/j.jhazmat.2009.09.014.

Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu J. 2009. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. Journal of Hazardous Materials, 167(1-3), pp.357-365. Available at: https://doi.org/10.1016/j.jhazmat.2009.01.050.

Hameed, B.H., Salman, J.M. & Ahmad, A.L. 2009. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials, 163(1), pp.121-126. Available at: https://doi.org/10.1016/j.jhazmat.2008.06.069.

Islam, K.N., Ali, M.E., Bakar, M.Z., Loqman, M.Y., Islam, A., Islam, M.S., Rahman, M.M. & Ullah, M. 2013. A novel catalytic method for the synthesis of spherical aragonite nanoparticles from cockle shells. Powder Technology, 246, pp.434-440. Available at: https://doi.org/10.1016/j.powtec.2013.05.046.

Kamga, F.T. 2019. Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Applied Water Science, 9(art.number:1). Available at: https://doi.org/10.1007/s13201-018-0879-3.

Karanac, M., Ðolić, M., Veljović, Ð., Rajaković-Ognjanović, V., Veličković, Z., Pavićević, V. & Marinković A. 2018. The removal of Zn2+, Pb2+, and As(V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Management, 78, pp.366-378. Available at: https://doi.org/10.1016/j.wasman.2018.05.052.

Khiri, M.Z.A., Matori, K.A., Zainuddin, N., Abdullah, C.A.C., Alassan, Z.N., Baharuddin, N.F. & Zaid M.H.M. 2016. The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature. SpringerPlus, 5(art.number: 1206). Available at: https://doi.org/10.1186/s40064-016-2824-y.

Krzeminska, M., Kuklinski, P., Najorka, J. & Iglikowska, A. 2016. Skeletal Mineralogy Patterns of Antarctic Bryozoa. Journal of Geology, 124(3). Available at: https://doi.org/10.1086/685507.

Kuklinski, P. & Taylor P.D. 2009. Mineralogy of Arctic bryozoan skeletons in a global context. Facies, 55, pp.489-500. Available at: https://doi.org/10.1007/s10347-009-0179-3.

Ohno, K., Minami, T., Matsui, Y. & Magara, Y. 2008. Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: desorption and oxon formation. Water Research, 42(6-7), pp.1753-1759. Available at: https://doi.org/10.1016/j.watres.2007.10.040.

Pantić, K., Bajić, Z.J., Veličković, Z.S., Djokić, V., Rusmirović, J., Marinković, A. & Perić-Grujić, A. 2019. Adsorption performances of branched aminated waste polyacrylonitrile fibers: experimental versus modelling study. Desalination and Water Treatment, 171, pp.223-249. Available at: https://doi.org/10.5004/dwt.2019.24758.

Perendija, J., Veličković, Z.S., Cvijetić, I., Lević, S., Marinković, A., Milošević, M. & Onjia, A. 2021. Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. Process Safety and Environmental Protection, 147, pp.609-625. Available at: https://doi.org/10.1016/j.psep.2020.12.027.

Ramajo, L., Rodriguez-Navarro, A.B., Duarte, C.M., Lardies, M.A. & Lagos, N.A. 2015. Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Marine and Freshwater Research, 66(12), pp.1147-1157. Available at: https://doi.org/10.1071/MF14232.

Salma, K., Berzina-Cimdina, L. & Borodajenko, N. 2010. Calcium phosphate bioceramics prepared from wet chemically precipitated powders. Processing and Application of Ceramics, 4(1), pp.45-51. Available at: https://doi.org/10.2298/PAC1001045S.

Singh, V.K., Singh, R.S., Tiwari, P.N., Singh, J.K., Gode, F. & Sharma, Y.C. 2010. Removal of Malathion from Aqueous Solutions and Waste Water Using Fly Ash. Journal of Water Resource and Protection, 2(4), pp.322-330. Available at: https://doi.org/10.4236/jwarp.2010.24037.

Skwarek, E., Janusz, W. & Sternik, D. 2014. Adsorption of citrate ions on hydroxyapatite synthetized by various methods. Journal of Radioanalytical and Nuclear Chemistry, 299, pp.2027-2036 Available at: https://doi.org/10.1007/s10967-013-2825-z.

Stevanović, M., Bajić, Z.J., Veličković, Z.S., Karkalić, R., Pecić, Lj., Otrisal, P.& Marinković, A. 2020. Adsorption performances and antimicrobial activity of the nanosilver modified montmorillonite clay. Desalination and Water Treatment, 187, pp.345-369. Available at: http://dx.doi.org/10.5004/dwt.2020.25451

Taleb, K., Markovski, J., Milosavljević, M., Marinović-Cincović, M., Rusmirović, J., Ristić, M. & Marinković, A., 2015. Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: material performance. Chemical Engineering Journal, 279, pp.66-78. Available at: https://doi.org/10.1016/j.cej.2015.04.147.

Taleb, K., Markovski, J., Veličković, Z., Rusmirović, J., Rančić, M., Pavlović, V. & Marinković, A. 2019. Arsenic removal by magnetite-loaded aminomodified nano/microcellulose adsorbents: Effect of functionalization and media size. Arabian Journal of Chemistry, 12(8), pp.4675-4693. Available at: https://doi.org/10.1016/j.arabjc.2016.08.006.

Wei, D., Zhang, H., Cai, L., Guo, J., Wang, Y., Ji, L. & Song, W. 2018. Calcined Mussel Shell Powder (CMSP) via Modification with Surfactants: Application for Antistatic Oil-Removal. Materials, 11(8), 1410. Available at: https://doi.org/10.3390/ma11081410.

Published
2021/10/28
Section
Original Scientific Papers