Modelovanje neizvesnosti primenom intuitivnih fazi brojeva

Ključne reči: fazi logika, fazi broj, intuitivni fazi broj, IF ELEKTRE

Sažetak


Uvod/cilj: U radu je razmatran izbor najpovoljnijeg dobavljača na primeru besposadne letelice, u slučaju kada donosilac odluke raspolaže podacima kvalitativnog karaktera. Problemi koji se javljaju u praksi pri izboru dobavljača odnose se na izbor adekvatnih kriterijuma, kao i način na koji ih donosilac odluke ocenjuje. Jedan od načina ocenjivanja kriterijuma kvalitativnog karaktera jeste korišćenje lingvističkih izraza, koji donosiocu odluke daju slobodu da svoj stav i mišljenje iskaže pomoću opisnih ocena. Ovakav način ocenjivanja nije najprecizniji, što donosiocu odluke može izazvati određenu dozu neizvesnosti. .

Metode: Za rešavanje problema neizvesnosti, u radu je predložena metoda modelovanja podataka primenom intuitivnih fazi brojeva. Oni su pogodni za rešavanje problema neizvesnosti u situacijama kada je potrebno da se preispita sigurnost prilikom ocenjivanja. Za rangiranje dobavljača u radu se koristi metoda ELEKTRE koja je prilagođena intuitivnim fazi brojevima (IF ELEKTRE). Metoda IFS ELEKTRE odabrana je zbog toga što jasno prezentuje potencijal svih dobavljača, odnosno njihove prednosti i nedostatke u odnosu na zahtevane kriterijume.

Rezultati: Korišćenjem IF ELEKTRE konačni rezultati pružaju sliku o međusobnoj preferentnosti, odnosno indiferentnosti između dobavljača. Rangiranjem su jasno prikazani potencijali svih dobavljača, što u nekoj narednoj nabavci može poslužiti kao referenca za donošenje odluke.

Zaključak: Doprinos ovog rada ogleda se u predloženom modelu koji u praksi može poslužiti za rešavanje problema izbora dobavljača, ali i sličnih problema kada se odluka donosi na osnovu nepreciznih podataka. Korišćenjem navedenih modela smanjuje se neodlučnost i subjektivnost pri donošenju odluke.

Reference

Alipour, M., Hafezi, R., Ervural, B., Kaviani, M.A. & Kabak, Ö. 2018. Long-term policy evaluation: Application of a new robust decision framework for Iran's energy exports security. Energy, 157, pp.914-931. Available at: https://doi.org/10.1016/j.energy.2018.05.176.

Arunodaya, R.M., Abhishek, K.G., Honey, P., Pushpendra, R., Huchang, L. & Abbas, M. 2020. An Extended Intuitionistic Fuzzy Multi-Attributive Border Approximation Area Comparison Approach for Smartphone Selection Using Discrimination Measures. Informatica, 32(1), pp.119-143, Available at: https://doi.org/10.15388/20-infor430.

Atanassov, K.T. 1983. Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June. Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6 [online]. Available at: https://www.proquest.com/openview/488e821e83b74821060562dc9b20f49e/1?pq-origsite=gscholar&cbl=4720765 [Accessed: 20 July 2021].

Atanassov, K.T. 1986. Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1), pp.87-96. Available at: https://doi.org/10.1016/S0165-0114(86)80034-3.

Chen, T-Y. 2016. An IVIF-ELECTRE outranking method for multiple criteria decision-making with interval-valued intuitionistic fuzzy sets. Technological and Economic Development of Economy, 22(3), pp.416-452. Available at: https://doi.org/10.3846/20294913.2015.1072751.

Chen, T-Y. 2019. A novel PROMETHEE-based method using a Pythagorean fuzzy combinative distance-based precedence approach to multiple criteria decision making. Applied Soft Computing, 82(at.number:105560). Available at: https://doi.org/10.1016/j.asoc.2019.105560.

Das, S., Kar, S. & Pal, T. 2017. Robust decision making using intuitionistic fuzzy numbers. Granular Computing, 2(1), pp.41-54. Available at: https://doi.org/10.1007/s41066-016-0024-3.

Dubois, D. & Prade, H. 1978. Operations on fuzzy numbers. International Journal of Systems Science, 9(6), pp.613-626. Available at: https://doi.org/10.1080/00207727808941724.

Dubois, D. & Prade, H. 1979. Operations in a fuzzy-valued logic. Information and Control, 43(2), pp.224-240. Available at: https://doi.org/10.1016/S0019-9958(79)90730-7.

Goker, N.A. 2021. A novel integrated intuitionistic fuzzy decision aid for agile outsourcing provider selection: a COVID-19 pandemic-based scenario analysis. Soft Computing. Available at: https://doi.org/10.1007/s00500-021-06037-0.

Jacek, Ż. & Kruszyński, M. 2015. Application of AHP and ELECTRE III/IV Methods to Multiple Level, Multiple Criteria Evaluation of Urban Transportation Projects. Transportation Research Procedia, 10, pp.820-830. Available at: https://doi.org/10.1016/j.trpro.2015.09.035.

Kaur, P. 2014. Selection of Vendor Based on Intuitionistic Fuzzy Analytical Hierarchy Process. Advances in Operations Research, 2014(art.ID:987690). Available at: https://doi.org/10.1155/2014/987690.

Komsiyah, S., Wongso, R. & Pratiwi, S.W. 2019. Applications of the Fuzzy ELECTRE Method for Decision Support Systems of Cement Vendor Selection. Procedia Computer Science, 157, pp.479-488. Available at: https://doi.org/10.1016/j.procs.2019.09.003.

Kushwaha, D.K., Panchal, D. & Sachdeva, A. 2020. Risk analysis of cutting system under intuitionistic fuzzy environment. Reports in Mechanical Engineering, 1(1), pp.162-173 [online]. Available at: https://www.frontpres.rabek.org/index.php/asd/article/view/21 [Accessed: 20 July 2021].

Lootsma, A.F. 1993. Scale sensitivity in the multiplicative AHP and SMART. Journal of Multi-Criteria Decision Analysis, 2(2), pp.87-110 Available at:https://doi.org/10.1002/mcda.4020020205.

Luo, L. & Ren, H. 2016. A new similarity measure of intuitionistic fuzzy set and application in madm problem. AMSE JOURNALS-2016-Series: Advances A, 59(1), pp.204-223 [online]. Available at: https://amsemodelling.com/publications/advances_in_modelling/General_Mathematics/531/A%20New%20Similarity%20Measure%20of%20Intuitionistic%20Fuzzy%20Set%20and%20Application%20in%20MADM%20Problem.pdf [Accessed: 20 July 2021].

Mendel, J.M. 2003. Type-2 Fuzzy Sets: Some Questions and Answers. IEEE Connections, Newsletter of the IEEE Neural Networks Society, 1, pp.10-13 [online]. Available at: http://150.214.190.154/sites/default/files/files/linksInterest/Tutorials/Tutorial-Mendel-Type-2-Fuzzy-Sets.pdf [Accessed: 20 July 2021].

Milošević, T.D., Pamučar, D.S. & Prasenjit, C. 2021. Model for selecting a route for the transport of hazardous materials using a fuzzy logic system. Vojnotehnički glasnik/Military Technical Courier, 69(2), pp.355-390. Available at: https://doi.org/10.5937/vojtehg69-29629.

Nirmala, G. & Uthra, G. 2017. Triangular intuitionistic fuzzy ahp and its application to select best product of notebook computer. International Journal of Pure and Applied Mathematics, 113(10), pp.253-261 [online]. Available at: http://acadpubl.eu/jsi/2017-113-pp/articles/10/28.pdf [Accessed: 20 July 2021].

Park, J-H., Hwang, J-H., Park, W-J., Wei, H. & Lee, S-H. 2013. Similarity measure on intuitionistic fuzzy sets. Journal of Central South University, 20, pp.2233-2238. Available at: https://doi.org/10.1007/s11771-013-1729-y.

Pokorni, S. 2021. Current state of the application of artificial intelligence in reliability and maintenance. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.578-593. Available at: https://doi.org/10.5937/vojtehg69-30434.

Rogulj, K. & Kilić Pamuković, J. 2021. Environmental Adaptation of Construction Barriers under Intuitionistic Fuzzy Theory. Technical Journal 15(1), pp.1-10. Available at: https://doi.org/10.31803/tg-20210215210742.

Rouyendegh, B.D. 2018. The Intuitionistic Fuzzy ELECTRE model. International Journal of Management Science and Engineering Management, 13(2), pp.139-145. Available at: https://doi.org/10.1080/17509653.2017.1349625.

Rouyendegh, B.D. & Serpil, E. 2012. Selecting the Best Project Using the Fuzzy ELECTRE Method. Mathematical Problems in Engineering, 2012(art.ID:790142). Available at: https://doi.org/10.1155/2012/790142.

Roy, B. & Bouyssou, D. 1995. Comparison of Two Decision-Aid Models Applied to a Nuclear Power Plant Siting Example. In: Munier, B.R. (eds) Markets, Risk and Money. Theory and Decision Library (Series B: Mathematical and Statistical Methods), 26. Springer, Dordrecht. Available at: https://doi.org/10.1007/978-94-011-0780-8_13.

Shureshjani, R.A. 2021. A developed Best-Worst method to solve multi-criteria decision-making problems under intuitionistic fuzzy environments. Mathematics and Computational Sciences, 1(4), pp.43-55. Available at: https://doi.org/10.30511/mcs.2021.537067.1033.

Sokolova, M.L. & Chernov, V.G. 2016. Choice of the means of transport for the creation of a logistic system relying on uncertainties. Vojnotehnički glasnik/Military Technical Courier, 64(2), pp.431-446. Available at: https://doi.org/10.5937/vojtehg64-10304.

Šmidovnik, T. & Grošelj, P. 2021. Inclusion of uncertainty with different types of fuzzy numbers into DEMATEL. Serbian Journal of Management, 16(1), pp.49-59. Available at: https://doi.org/10.5937/sjm16-30160.

Tanasijević, M., Ivezić, D. & Ivković, S. 2007. Model for analysis and synthesis of dependability performance. Journal of Applied Engineering Science, 5(17), pp.15-24 [online]. Available at: http://www.engineeringscience.rs/article/2007/Volume_5_17/Volume_5_article_108 (in Serbian [Accessed: 20 July 2021].

Tavana, M., Zareinejad, M., Di Caprio, D. & Kaviani, M.A. 2016. An integrated intuitionistic fuzzy AHP and SWOT. Applied Soft Computing, 40, pp.544-557. Available at: https://doi.org/10.1016/j.asoc.2015.12.005.

Wu, M-C. & Chen, T-Y. 2011. The ELECTRE Multicriteria Analysis Approach Based on Atanassov’s Intuitionistic Fuzzy Sets. Expert Systems with Applications, 38(10), pp.12318-12327. Available at: https://doi.org/10.1016/j.eswa.2011.04.010.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control. Information Sciences, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.

Zadeh, L.A. 1975a. The concept of a linguistic variable and its application to approximate reasoning–I. Information Sciences, 8(3), pp.199-249. Available at: https://doi.org/10.1016/0020-0255(75)90036-5.

Zadeh, L.A. 1975b. The concept of a linguistic variable and its application to approximate reasoning–II. Information Sciences, 8(4), pp.301-357. Available at: https://doi.org/10.1016/0020-0255(75)90046-8.

Zadeh, L.A. 2011. A note on Z-numbers. Information Sciences, 181(14), pp.2923-2932. Available at: https://doi.org/10.1016/j.ins.2011.02.022.

Zeng, X-T., Li, D-F. & Yu, G-F. 2014. A Value and Ambiguity-Based Ranking Method of Trapezoidal Intuitionistic Fuzzy Numbers and Application to Decision Making. The Scientific World Journal, 2014(art.ID:560582). Available at: https://doi.org/10.1155/2014/560582.

Zhang, C. & Fu, H. 2006. Similarity measures on three kinds of fuzzy sets. Pattern Recognition Letters, 27(12), pp.1307-1317. Available at: https://doi.org/10.1016/j.patrec.2005.11.020.

Zheng, P., Xu, X. & Xie, S.Q. 2019. A weighted interval rough number based method to determine relative importance ratings of customer requirements in QFD product planning. Journal of Intelligent Manufacturing, 30, pp.3-16. Available at: https://doi.org/10.1007/s10845-016-1224-z.

Zimmermann, H-J. 1996. Fuzzy set theory and its applications, Boston, Kluwer Academic Publiching, USA. Available at: https://doi.org/10.1007/978-94-010-0646-0. ISBN: 978-94-010-0646-0.

Objavljeno
2021/10/28
Rubrika
Originalni naučni radovi