Uncertainty modeling using intuitionistic fuzzy numbers

Keywords: fuzzy logic, fuzzy set, intuitionistic fuzzy set, IF ELECTRE method

Abstract


Introduction/purpose: The paper discusses the selection of the most optimal supplier using the example of an unmanned aircraft when the decision maker has data of a qualitative nature. Problems that arise in practice in the selection of suppliers relate to the selection of adequate criteria as well as the way they are evaluated by the decision maker. One of the ways of assessing the criteria of a qualitative character is the usage of linguistic expressions, which gives decision makers the freedom to express their position and opinion through descriptive assessments. This method of assessment is not the most accurate and can introduce a certain amount of uncertainty for the decision maker.

Methods: To solve the problem of uncertainty, the paper proposes a method of modeling data using intuitive phase numbers. Intuitive phase numbers are suitable for solving the problem of uncertainty in situations when it is necessary to review safety during the assessment. To rank suppliers, the ELECTRE method is used, which is adapted to intuitive phase numbers (IF ELECTRE). The IF ELECTRE method was chosen because it clearly presents the potential of all suppliers, i.e. their advantages and disadvantages in relation to the required criteria.

Results: Using IF ELECTRE, the final results provide a shape of mutual preference or indifference between suppliers. The ranking clearly shows the potential of all suppliers, which in a future procurement can serve as a reference for decision making.

Conclusion: The contribution of this paper is reflected in the proposed model that can be used in practice to solve not only the problem of supplier selection, but also similar problems where the decision is made based on inaccurate data. Using these models seeks to reduce indecision and subjectivity in decision making.

References

Alipour, M., Hafezi, R., Ervural, B., Kaviani, M.A. & Kabak, Ö. 2018. Long-term policy evaluation: Application of a new robust decision framework for Iran's energy exports security. Energy, 157, pp.914-931. Available at: https://doi.org/10.1016/j.energy.2018.05.176.

Arunodaya, R.M., Abhishek, K.G., Honey, P., Pushpendra, R., Huchang, L. & Abbas, M. 2020. An Extended Intuitionistic Fuzzy Multi-Attributive Border Approximation Area Comparison Approach for Smartphone Selection Using Discrimination Measures. Informatica, 32(1), pp.119-143, Available at: https://doi.org/10.15388/20-infor430.

Atanassov, K.T. 1983. Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June. Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6 [online]. Available at: https://www.proquest.com/openview/488e821e83b74821060562dc9b20f49e/1?pq-origsite=gscholar&cbl=4720765 [Accessed: 20 July 2021].

Atanassov, K.T. 1986. Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1), pp.87-96. Available at: https://doi.org/10.1016/S0165-0114(86)80034-3.

Chen, T-Y. 2016. An IVIF-ELECTRE outranking method for multiple criteria decision-making with interval-valued intuitionistic fuzzy sets. Technological and Economic Development of Economy, 22(3), pp.416-452. Available at: https://doi.org/10.3846/20294913.2015.1072751.

Chen, T-Y. 2019. A novel PROMETHEE-based method using a Pythagorean fuzzy combinative distance-based precedence approach to multiple criteria decision making. Applied Soft Computing, 82(at.number:105560). Available at: https://doi.org/10.1016/j.asoc.2019.105560.

Das, S., Kar, S. & Pal, T. 2017. Robust decision making using intuitionistic fuzzy numbers. Granular Computing, 2(1), pp.41-54. Available at: https://doi.org/10.1007/s41066-016-0024-3.

Dubois, D. & Prade, H. 1978. Operations on fuzzy numbers. International Journal of Systems Science, 9(6), pp.613-626. Available at: https://doi.org/10.1080/00207727808941724.

Dubois, D. & Prade, H. 1979. Operations in a fuzzy-valued logic. Information and Control, 43(2), pp.224-240. Available at: https://doi.org/10.1016/S0019-9958(79)90730-7.

Goker, N.A. 2021. A novel integrated intuitionistic fuzzy decision aid for agile outsourcing provider selection: a COVID-19 pandemic-based scenario analysis. Soft Computing. Available at: https://doi.org/10.1007/s00500-021-06037-0.

Jacek, Ż. & Kruszyński, M. 2015. Application of AHP and ELECTRE III/IV Methods to Multiple Level, Multiple Criteria Evaluation of Urban Transportation Projects. Transportation Research Procedia, 10, pp.820-830. Available at: https://doi.org/10.1016/j.trpro.2015.09.035.

Kaur, P. 2014. Selection of Vendor Based on Intuitionistic Fuzzy Analytical Hierarchy Process. Advances in Operations Research, 2014(art.ID:987690). Available at: https://doi.org/10.1155/2014/987690.

Komsiyah, S., Wongso, R. & Pratiwi, S.W. 2019. Applications of the Fuzzy ELECTRE Method for Decision Support Systems of Cement Vendor Selection. Procedia Computer Science, 157, pp.479-488. Available at: https://doi.org/10.1016/j.procs.2019.09.003.

Kushwaha, D.K., Panchal, D. & Sachdeva, A. 2020. Risk analysis of cutting system under intuitionistic fuzzy environment. Reports in Mechanical Engineering, 1(1), pp.162-173 [online]. Available at: https://www.frontpres.rabek.org/index.php/asd/article/view/21 [Accessed: 20 July 2021].

Lootsma, A.F. 1993. Scale sensitivity in the multiplicative AHP and SMART. Journal of Multi-Criteria Decision Analysis, 2(2), pp.87-110 Available at:https://doi.org/10.1002/mcda.4020020205.

Luo, L. & Ren, H. 2016. A new similarity measure of intuitionistic fuzzy set and application in madm problem. AMSE JOURNALS-2016-Series: Advances A, 59(1), pp.204-223 [online]. Available at: https://amsemodelling.com/publications/advances_in_modelling/General_Mathematics/531/A%20New%20Similarity%20Measure%20of%20Intuitionistic%20Fuzzy%20Set%20and%20Application%20in%20MADM%20Problem.pdf [Accessed: 20 July 2021].

Mendel, J.M. 2003. Type-2 Fuzzy Sets: Some Questions and Answers. IEEE Connections, Newsletter of the IEEE Neural Networks Society, 1, pp.10-13 [online]. Available at: http://150.214.190.154/sites/default/files/files/linksInterest/Tutorials/Tutorial-Mendel-Type-2-Fuzzy-Sets.pdf [Accessed: 20 July 2021].

Milošević, T.D., Pamučar, D.S. & Prasenjit, C. 2021. Model for selecting a route for the transport of hazardous materials using a fuzzy logic system. Vojnotehnički glasnik/Military Technical Courier, 69(2), pp.355-390. Available at: https://doi.org/10.5937/vojtehg69-29629.

Nirmala, G. & Uthra, G. 2017. Triangular intuitionistic fuzzy ahp and its application to select best product of notebook computer. International Journal of Pure and Applied Mathematics, 113(10), pp.253-261 [online]. Available at: http://acadpubl.eu/jsi/2017-113-pp/articles/10/28.pdf [Accessed: 20 July 2021].

Park, J-H., Hwang, J-H., Park, W-J., Wei, H. & Lee, S-H. 2013. Similarity measure on intuitionistic fuzzy sets. Journal of Central South University, 20, pp.2233-2238. Available at: https://doi.org/10.1007/s11771-013-1729-y.

Pokorni, S. 2021. Current state of the application of artificial intelligence in reliability and maintenance. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.578-593. Available at: https://doi.org/10.5937/vojtehg69-30434.

Rogulj, K. & Kilić Pamuković, J. 2021. Environmental Adaptation of Construction Barriers under Intuitionistic Fuzzy Theory. Technical Journal 15(1), pp.1-10. Available at: https://doi.org/10.31803/tg-20210215210742.

Rouyendegh, B.D. 2018. The Intuitionistic Fuzzy ELECTRE model. International Journal of Management Science and Engineering Management, 13(2), pp.139-145. Available at: https://doi.org/10.1080/17509653.2017.1349625.

Rouyendegh, B.D. & Serpil, E. 2012. Selecting the Best Project Using the Fuzzy ELECTRE Method. Mathematical Problems in Engineering, 2012(art.ID:790142). Available at: https://doi.org/10.1155/2012/790142.

Roy, B. & Bouyssou, D. 1995. Comparison of Two Decision-Aid Models Applied to a Nuclear Power Plant Siting Example. In: Munier, B.R. (eds) Markets, Risk and Money. Theory and Decision Library (Series B: Mathematical and Statistical Methods), 26. Springer, Dordrecht. Available at: https://doi.org/10.1007/978-94-011-0780-8_13.

Shureshjani, R.A. 2021. A developed Best-Worst method to solve multi-criteria decision-making problems under intuitionistic fuzzy environments. Mathematics and Computational Sciences, 1(4), pp.43-55. Available at: https://doi.org/10.30511/mcs.2021.537067.1033.

Sokolova, M.L. & Chernov, V.G. 2016. Choice of the means of transport for the creation of a logistic system relying on uncertainties. Vojnotehnički glasnik/Military Technical Courier, 64(2), pp.431-446. Available at: https://doi.org/10.5937/vojtehg64-10304.

Šmidovnik, T. & Grošelj, P. 2021. Inclusion of uncertainty with different types of fuzzy numbers into DEMATEL. Serbian Journal of Management, 16(1), pp.49-59. Available at: https://doi.org/10.5937/sjm16-30160.

Tanasijević, M., Ivezić, D. & Ivković, S. 2007. Model for analysis and synthesis of dependability performance. Journal of Applied Engineering Science, 5(17), pp.15-24 [online]. Available at: http://www.engineeringscience.rs/article/2007/Volume_5_17/Volume_5_article_108 (in Serbian [Accessed: 20 July 2021].

Tavana, M., Zareinejad, M., Di Caprio, D. & Kaviani, M.A. 2016. An integrated intuitionistic fuzzy AHP and SWOT. Applied Soft Computing, 40, pp.544-557. Available at: https://doi.org/10.1016/j.asoc.2015.12.005.

Wu, M-C. & Chen, T-Y. 2011. The ELECTRE Multicriteria Analysis Approach Based on Atanassov’s Intuitionistic Fuzzy Sets. Expert Systems with Applications, 38(10), pp.12318-12327. Available at: https://doi.org/10.1016/j.eswa.2011.04.010.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control. Information Sciences, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.

Zadeh, L.A. 1975a. The concept of a linguistic variable and its application to approximate reasoning–I. Information Sciences, 8(3), pp.199-249. Available at: https://doi.org/10.1016/0020-0255(75)90036-5.

Zadeh, L.A. 1975b. The concept of a linguistic variable and its application to approximate reasoning–II. Information Sciences, 8(4), pp.301-357. Available at: https://doi.org/10.1016/0020-0255(75)90046-8.

Zadeh, L.A. 2011. A note on Z-numbers. Information Sciences, 181(14), pp.2923-2932. Available at: https://doi.org/10.1016/j.ins.2011.02.022.

Zeng, X-T., Li, D-F. & Yu, G-F. 2014. A Value and Ambiguity-Based Ranking Method of Trapezoidal Intuitionistic Fuzzy Numbers and Application to Decision Making. The Scientific World Journal, 2014(art.ID:560582). Available at: https://doi.org/10.1155/2014/560582.

Zhang, C. & Fu, H. 2006. Similarity measures on three kinds of fuzzy sets. Pattern Recognition Letters, 27(12), pp.1307-1317. Available at: https://doi.org/10.1016/j.patrec.2005.11.020.

Zheng, P., Xu, X. & Xie, S.Q. 2019. A weighted interval rough number based method to determine relative importance ratings of customer requirements in QFD product planning. Journal of Intelligent Manufacturing, 30, pp.3-16. Available at: https://doi.org/10.1007/s10845-016-1224-z.

Zimmermann, H-J. 1996. Fuzzy set theory and its applications, Boston, Kluwer Academic Publiching, USA. Available at: https://doi.org/10.1007/978-94-010-0646-0. ISBN: 978-94-010-0646-0.

Published
2021/10/28
Section
Original Scientific Papers