Integral puta u kvantnim teorijama polja

  • Nicola Fabiano Univerzitet u Beogradu, Institut za nuklearne nauke ”Vinča”- Institut od nacionalnog značaja za Republiku Srbiju, Beograd, Republika Srbija https://orcid.org/0000-0003-1645-2071
Ključne reči: integral putanje, kvantna mehanika, kvantna teorija polja

Sažetak


Uvod / cilj: Polazeći od Hamiltonijana, dat je alternativni opis kvantne mehanike, zasnovan na zbiru svih mogućih puteva između početne i finalne tačke.

Metode: Teorijske metode matematičke fiizike. Integralni metod zasnovan na integralu puta.

Rezultati: Metode i koncepti integrala puta mogu biti primenjeni i na druge grane fizike, nisu ograničeni na kvantnu mehaniku.

 

Zaključak: Pristup zasnovan na integralu puta daje glo[1]balni opis polja, za razliku od uobičajenog pristupa zasnovanog na Lagranžijanu koji predstavlja lokalni opis polja.

 

Reference

Coleman, S. 1985. Aspects of Symmetry: Selected Erice Lectures. Cambridge, UK: Cambridge University Press. Available at: https://doi.org/10.1017/CBO9780511565045

Dirac, P.A.M. 1933. The Lagrangian in Quantum Mechanics. Physikalische Zeitschrift der Sowjetunion, 3(1), pp.64-72.

Fabiano, N. 2021a. Quantum electrodynamics divergencies. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.656-675. Available at: https://doi.org/10.5937/vojtehg69-30366

Fabiano, N. 2021b. Corrections to propagators of Quantum Electrodynamics. Vojnotehnički glasnik/Military Technical Courier, 69(4), pp.930-940. Available at: https://doi.org/10.5937/vojtehg69-30604

Fabiano, N. & Mirkov, N. 2022. Saddle point approximation to Higher order. Vojnotehnički glasnik/Military Technical Courier, 70(2), pp.447-460. Available at: https://doi.org/10.5937/vojtehg70-33507

Feynman, R.P. 1948. Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, 20(2), pp.367-387. Available at: https://doi.org/10.1103/RevModPhys.20.367

Feynman, R.P. 1950. Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction. Physical Review, 80(2), pp.440-456. Available at: https://doi.org/10.1103/PhysRev.80.440

Feynman, R.P. 1951. An Operator Calculus Having Applications in Quantum Electrodynamics. Physical Review, 84(1), pp.108-128. Available at: https://doi.org/10.1103/PhysRev.84.108

Feynman, R.P. & Hibbs, A.R. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill. ISBN-13: 978-0-486-47722-0.

Fradkin, E.S. 1959. The Green’s Functions Method in Quantum Statistics. Soviet Journal of Experimental and Theoretical Physics/Soviet Physics—JETP, Vol. 36(9), No. 4, pp.1286-1298 [online]. Available at: http://jetp.ras.ru/cgi-bin/dn/e_009_04_0912.pdf [Accessed: 10 January 2022]. 

Schwinger, J. 1951. On the Green’s functions of quantized fields. I. Proceedings of the National Academy of Sciences (PNAS), 37(7), pp.452-455. Available at: https://doi.org/10.1073/pnas.37.7.452

Objavljeno
2022/10/14
Rubrika
Pregledni radovi