Path integral in quantum field theories

  • Nicola Fabiano University of Belgrade, “Vinča” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Belgrade, Republic of Serbia https://orcid.org/0000-0003-1645-2071
Keywords: path integral, quantum mechanics, quantum field theory

Abstract


Introduction/purpose: Starting from the Hamiltonian an alternative description of quantum mechanics has been given, based on the sum of all possible paths between an initial and a final point.

Methods: Theoretical methods of mathematical physics. Integral method based on the path integral.

Results: The method and concepts of the path integral could be applied to other branches of physics, not limited to quantum mechanics.

Conclusions: The Path Integral approach gives a global description of fields, unlike the usual Lagrangian approach which is a local description of fields. 

References

Coleman, S. 1985. Aspects of Symmetry: Selected Erice Lectures. Cambridge, UK: Cambridge University Press. Available at: https://doi.org/10.1017/CBO9780511565045

Dirac, P.A.M. 1933. The Lagrangian in Quantum Mechanics. Physikalische Zeitschrift der Sowjetunion, 3(1), pp.64-72.

Fabiano, N. 2021a. Quantum electrodynamics divergencies. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.656-675. Available at: https://doi.org/10.5937/vojtehg69-30366

Fabiano, N. 2021b. Corrections to propagators of Quantum Electrodynamics. Vojnotehnički glasnik/Military Technical Courier, 69(4), pp.930-940. Available at: https://doi.org/10.5937/vojtehg69-30604

Fabiano, N. & Mirkov, N. 2022. Saddle point approximation to Higher order. Vojnotehnički glasnik/Military Technical Courier, 70(2), pp.447-460. Available at: https://doi.org/10.5937/vojtehg70-33507

Feynman, R.P. 1948. Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, 20(2), pp.367-387. Available at: https://doi.org/10.1103/RevModPhys.20.367

Feynman, R.P. 1950. Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction. Physical Review, 80(2), pp.440-456. Available at: https://doi.org/10.1103/PhysRev.80.440

Feynman, R.P. 1951. An Operator Calculus Having Applications in Quantum Electrodynamics. Physical Review, 84(1), pp.108-128. Available at: https://doi.org/10.1103/PhysRev.84.108

Feynman, R.P. & Hibbs, A.R. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill. ISBN-13: 978-0-486-47722-0.

Fradkin, E.S. 1959. The Green’s Functions Method in Quantum Statistics. Soviet Journal of Experimental and Theoretical Physics/Soviet Physics—JETP, Vol. 36(9), No. 4, pp.1286-1298 [online]. Available at: http://jetp.ras.ru/cgi-bin/dn/e_009_04_0912.pdf [Accessed: 10 January 2022]. 

Schwinger, J. 1951. On the Green’s functions of quantized fields. I. Proceedings of the National Academy of Sciences (PNAS), 37(7), pp.452-455. Available at: https://doi.org/10.1073/pnas.37.7.452

Published
2022/10/14
Section
Review Papers