Metode klasifikacije za prepoznavanje rukom pisanih cifara: pregled
Sažetak
Uvod/cilj: U radu je predstavljen pregled metoda za prepoznavanje rukom pisanih cifara testiranih na MNIST skupu podataka.
Metode: Rad analizira, sintetiše i upoređuje razvoj ra- zličitih klasifikatora primenjenih za prepoznavanje rukom pisanih cifara, od linearnih klasifikatora do konvolucijskih neuronskih mreža.
Rezultati: Tačnost klasifikacije za prepoznavanje ru- kom pisanih cifara testirana na skup podataka MNIST dok se koristi skup za treniranje i testiranje je sada ve- ća nego 99,5%. Najuspešnija metoda je konvolucijska neuronska mreža.
Zaključak: Tačno pre- poznavanje različitih stilova rukopisa, konkretno ci- fara, proučavano je decenijama, a u radu su sumirani postignuti rezultati. Najbolji su postignu- ti sa konvolucijskim neuronskim mrežama, dok su najlošije metode linearni klasifikatori. Konvolucijske neuron-ske mreže daju bolje rezultate ako je skup podataka proširen metodom augmentacije.
Reference
Aider, M.A., Hammouche, K. & Gaceb, D. 2018. Recognition of handwritten characters based on wavelet transform and SVM classifier. The International Arab Journal of Information Technology, 15(6), pp. 1082–1087 [online]. Available at: https://iajit.org/portal/PDF/November%202018,%20No.%206/10880.pdf [Accessed: 1 March 2022].
Armstrong, S. 2019. Naive-bayesian-mnist. Github. [online]. Available at: https://github.com/sjnarmstrong/naive-bayesian-mnist [Accessed: 10 March 2022].
Babu, U.R., Chintha, A.K. & Venkateswarlu, Y. 2014. Handwritten digit recognition using structural, statistical features and k-nearest neighbor classifier. International Journal of Information Engineering and Electronic Business (IJIEEB), 6(1), pp. 62–68. Available at: https://doi.org/10.5815/ijieeb.2014.01.07
Bacanin, N., Bezdan, T., Tuba, E., Strumberger, I. & Tuba, M. 2020. Monarch Butterfly Optimization Based Convolutional Neural Network Design. Mathematics, 8(6, art.ID:936), pp. 1–32. Available at: https://doi.org/10.3390/math8060936
Bhagya Shree, S. & Sheshadri, H. 2018. Diagnosis of Alzheimer’s disease using Naive Bayesian Classifier. Neural Computing and Applications, 29, pp. 123– 132. Available at: https://doi.org/10.1007/s00521-016-2416-3
Ciresan, D.C., Meier, U., Gambardella, L.M. & Schmidhuber, J. 2010. Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition. Neural Computation, 22(12), pp. 3207–3220. Available at: https://doi.org/10.1162/NECO_a_00052
Cortes, C. & Vapnik, V. 1995. Support-vector networks. Machine Learning, 20(3), pp. 273–297. Available at: https://doi.org/10.1007/BF00994018
Das, N., Reddy, J.M., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M. & Basu, D.K. 2012. A statistical–topological feature combination for recognition of handwritten numerals. Applied Soft Computing, 12(8), pp. 2486–2495. Available at: https://doi.org/10.1016/j.asoc.2012.03.039
Deotte, C. 2018. How to score 97%, 98%, 99%, and 100%. Kaggle. [online]. Available at: https://www.kaggle.com/c/digit-recognizer/discussion/61480 [Accessed: 10 March 2022].
Ebrahimzadeh, R. & Jampour, M. 2014. Efficient Handwritten Digit Recogni- tion based on Histogram of Oriented Gradients and SVM. International Journal of Computer Applications, 104(9), pp. 10–13. Available at: https://doi.org/10.5120/18229-9167
El qacimy, B., Ait kerroum, M. & Hammouch, A. 2014. Handwritten digit recognition based on DCT features and SVM classifier. In: 2014 Second World Conference on Complex Systems (WCCS). Agadir, Morocco, pp. 13–16, November 10-12. Available at: https://doi.org/10.1109/ICoCS.2014.7060935
Esmaili, I., Dabanloo, N.J. & Vali, M. 2016. Automatic classification of speech dysfluencies in continuous speech based on similarity measures and morphological image processing tools. Biomedical Signal Processing and Control, 23, pp. 104–114. Available at: https://doi.org/10.1016/j.bspc.2015.08.006
Gattal, A., Chibani, Y., Djeddi, C. & Siddiqi, I. 2014. Improving Isolated Digit Recognition Using a Combination of Multiple Features. In: 2014 14th International Conference on Frontiers in Handwriting Recognition. Hersonissos, Greece, pp. 446–451, September 01-04. Available at: https://doi.org/10.1109/ICFHR.2014.81
Grover, D. & Toghi, B. 2020. MNIST dataset classification utilizing k-NN classifier with modified sliding-window metric. In: Arai, K. & Kapoor, S. (Eds.) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing. 944, pp.583–591. Cham, Switzerland: Springer. Available at: par https://doi.org/10.1007/978-3-030-17798-0_47
Huang, H.Y. & Lin, C.J. 2016. Linear and Kernel Classification: When to Use Which? In: Proceedings of the 2016 SIAM International Conference on Data Mining (SDM). Miami, Florida, USA, pp. 216–224, May 5-7. Available at: https://doi.org/10.1137/1.9781611974348.25
Ilmi, N., Budi, W.T.A. & Nur, R.K. 2016. Handwriting digit recognition using local binary pattern variance and K-Nearest Neighbor classification. In: 2016 4th International Conference on Information and Communication Technology (ICoICT). Bandung, Indonesia, pp. 1–5, May 25-27. Available at: https://doi.org/10.1109/ICoICT.2016.7571937
Kang, C., Huo, Y., Xin, L., Tian, B. & Yu, B. 2019. Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine. Journal of Theoretical Biology, 463, pp. 77–91. Available at: https://doi.org/10.1016/j.jtbi.2018.12.010
Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), pp. 2278–2324. Available at: https://doi.org/10.1109/5.726791
Li, Y., Xiao, J., Chen, Y. & Jiao, L. 2019. Evolving deep convolutional neural networks by quantum behaved particle swarm optimization with binary encoding for image classification. Neurocomputing, 362, pp. 156–165. Available at: https://doi.org/10.1016/j.neucom.2019.07.026
Lyu, H.K., Park, C.H., Han, D.H., Kwak, S.W. & Choi, B. 2018. Orchard Free Space and Center Line Estimation Using Naive Bayesian Classifier for Unmanned Ground Self-Driving Vehicle. Symmetry, 10(9, art.ID:355), pp. 1–14. Available at: https://doi.org/10.3390/sym10090355
Meier, U., Ciresan, D.C., Gambardella, L.M. & Schmidhuber, J. 2011. Better Digit Recognition with a Committee of Simple Neural Nets. In: 2011 International Conference on Document Analysis and Recognition. Beijing, China, pp.1250– 1254, September 18-21. Available at: https://doi.org/10.1109/ICDAR.2011.252
Nosseir, A. & Roshdy, R. 2018. Extraction of Egyptian License Plate Numbers and Characters Using SURF and Cross Correlation. In: ICSIE ’18: Proceedings of the 7th International Conference on Software and Information Engineering. Cairo, Egypt, pp.48–55, May 02-04. Available at: https://doi.org/10.1145/3220267.3220276
Patel, A. & Kalyani, T. 2016. Support Vector Machine with Inverse Fringe as Feature for MNIST Dataset. In: 2016 IEEE 6th International Conference on Advanced Computing (IACC). Bhimavaram, India, pp.123–126, February 27-28. Available at: https://doi.org/10.1109/IACC.2016.32
Sethy, P.K., Barpanda, N.K., Rath, A.K. & Behera, S.K. 2020. Deep feature based rice leaf disease identification using support vector machine. Computers and Electronics in Agriculture, 175, art.number:105527. Available at: https://doi.org/10.1016/j.compag.2020.105527
Sivaram, M., Laxmi, L.E., Pustokhina, I.V., Pustokhin, D.A., Elhoseny, M., Joshi, G.P. & Shankar, K. 2020. An optimal least square support vector machine based earnings prediction of blockchain financial products. IEEE Access, 8, pp. 120321–120330. Available at: https://doi.org/10.1109/ACCESS.2020.3005808
Tuba, E., Bačanin, N., Strumberger, I. & Tuba, M. 2021. Convolutional Neural Networks Hyperparameters Tuning. In: Pap, E. (Eds.) Artificial Intelligence: Theory and Applications. Studies in Computational Intelligence. 973, pp.65–84. Cham, Switzerland: Springer. Available at: par https://doi.org/10.1007/978-3-030-72711-6_4
Tuba, E. & Tuba, I. 2021. Swarm Intelligence Algorithms for Convolutional Neural Networks. In: 2nd Workshop on Evolutionary and Population-based Optimization. Online Event, pp.1–6, November 30. Available at: https://wepo2021.aisylab.com/papers/wepo2021_paper_4.pdf [Accessed: 10 March 2022].
Tuba, E., Tuba, M. & Simian, D. 2016. Handwritten digit recognition by support vector machine optimized by Bat algorithm. In: WSCG ’2016: short commu nications proceedings: The 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in cooperation with EUROGRAPHICS. Plzen, Czech Republic: University of West Bohemia, pp.369- 376, May 30-June 03. Available at: http://hdl.handle.net/11025/29725 [Accessed: 10 March 2022].
Wang, H., Zheng, B., Yoon, S.W. & Ko, H.S. 2018. A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2), pp. 687–699. Available at: https://doi.org/10.1016/j.ejor.2017.12.001
Wang, K. & Zhang, H. 2020. A Novel Naive Bayesian Approach to Inference with Applications to the MNIST Handwritten Digit Classification. In: 2020 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas, NV, USA, pp.1354-1358, December 16-18. Available at: https://doi.org/10.1109/CSCI51800.2020.00252
Yuan, G.X., Ho, C.H. & Lin, C.J. 2012. Recent Advances of Large-Scale Linear Classification. Proceedings of the IEEE, 100(9), pp. 2584–2603. Available at: https://doi.org/10.1109/JPROC.2012.2188013
Zhai, Z., Xu, Z., Zhou, X., Wang, L. & Zhang, J. 2015. Recognition of hazard grade for cotton blind stinkbug based on Naive Bayesian classifier. Transactions of the Chinese Society of Agricultural Engineering, 31(1), pp. 204–211 [online]. Available at: http://www.tcsae.org/nygcxben/article/abstract/20150128 [Accessed: 1 March 2022].
Zhu, W., Yeh, W., Chen, J., Chen, D., Li, A. & Lin, Y. 2019. Evolutionary Convolutional Neural Networks Using ABC. In: ICMLC ’19: Proceedings of the 2019 11th International Conference on Machine Learning and Computing. Zhuhai, China, pp.156–162, February 22-24. Available at: https://doi.org/10.1145/3318299.3318301
Sva prava zadržana (c) 2023 Ira M. Tuba, Una M. Tuba, Mladen Đ, Veinović
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).