Satelitsko osmatranje i duboko učenje za predviđanje aerosola
Sažetak
Uvod: Izložena je unapređena metoda koja uključuje Nasine satelitske snimke sa najnovijim modelom dubokog učenja koji se odnosi na problem predviđanja prostorno-vremenskih signala. Informacija o aerosolima sa satelitskih snimaka je vrlo značajna za predviđanje disperzije čestica u atmosferi i prenosa virusa COVID-19. Ulazni podaci MODAL2_E_AER_OD predstavljaju globalni AOT za osam dana sa Terra/MODIS. Algoritam mašinskog učenja je sačinjen od kompozitnih neuronskih slojeva Con-vLSTM2D u biblioteci Keras. Dobijeni rezultati su upoređeni sa novim modelom CNN LSTM.
Metode: Proračunske metode mašinskog učenja, veštačke neuronske mreže, duboko učenje.
Rezultati: Rezultati prikazuju globalno predviđanje optičke debljine aerosola sa digitalnim satelitskim snimcima koji su korišćeni kao ulazni podaci.
Zaključak: Pokazano je da je razvijeni model ConvLSTM pogodan za globalno predviđanje atmo-sferske debljine aerosola, kao i za prenos atmosferskih čestica i virusa COVID-19.
Reference
Beer, C.G., Hendricks, J., Righi, M., Heinold, B., Tegen, I., Groß, S., Sauer, D., Walser, A. & Weinzierl, B. 2020. Modelling mineral dust emissions and atmo- spheric dispersion with MADE3 in EMAC v2. 54. Geoscientific Model Develop- ment, 13(9), pp. 4287–4303. Available at: https://doi.org/10.5194/gmd-13-4287-2020,2020
Colbeck, I. & Lazaridis, M. 2013. Introduction. In: Colbeck, I. and Lazaridis, M. (Eds.) Aerosol Science. Wiley Online Library. Available at: https://doi.org/10.1002/9781118682555.ch1.
Dey, P., Chaulya, S. & Kumar, S. 2021. Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system. Process Safety and Environmen- tal Protection, 152, pp. 249–263. Available at: https://doi.org/10.1016/j.psep.2021.06.005
Ding, X., Feng, L., Zou, Y. & Zhang, G. 2020. Deep learning aided spectrum prediction for satellite communication systems. IEEE Transactions on Vehicular Technology, 69(12), pp. 16314–16319. Available at: https://doi.org/10.1109/TVT.2020.3043837
Donahue, J., Hendricks, A.L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Darrell, T. & Saenko, K. 2015. Long-term recurrent convolutional networks for visual recognition and description. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). p. . Boston, MA, USA, pp.2625-2634, June 07-12. Available at: https://doi.org/10.1109/CVPR.2015.7298878
Eleftheriadis, K., Gini, M.I., Diapouli, E., Vratolis, S., Vasilatou, V., Fetfatzis, P. & Manousakas, M.I. 2021. Aerosol microphysics and chemistry reveal the COVID19 lockdown impact on urban air quality. Scientific Reports, 11, art.number:14477. Available at: https://doi.org/10.1038/s41598-021-93650-6
Elperin, T., Fominykh, A., Katra, I. & Krasovitov, B. 2017. Modeling of gas adsorption by aerosol plumes emitted from industrial sources. Process Safety and Environmental Protection, 111, pp. 375–387. Available at: https://doi.org/10.1016/j.psep.2017.06.022
Filonchyk, M., Yan, H., Zhang, Z., Yang, S., Li, W. & Li, Y. 2019. Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Scientific reports, 9(art.number:6174), pp. 1–15. Available at: https://doi.org/10.1038/s41598-019-42466-6
Hochreiter, S. & Schmidhuber, J. 1997. Long short-term memory. Neural com- putation, 9(8), pp. 1735–1780. Available at: https://doi.org/10.1162/neco.1997.9.8.1735
Hu, W.S., Li, H.C., Pan, L., Li, W., Tao, R. & Du, Q. 2020. Spatial–spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(6), pp. 4237–4250. Available at: https://doi.org/10.1109/TGRS.2019.2961947
Kumar, N., Chu, A. & Foster, A. 2007. An empirical relationship between PM2. 5 and aerosol optical depth in Delhi Metropolitan. Atmospheric Environment, 41(21), pp. 4492–4503. Available at: https://doi.org/10.1016/j.atmosenv.2007.01.046
Lin, C., Liu, G., Lau, A.K.H., Li, Y., Li, C., Fung, J.C.H. & Lao, X.Q. 2018. High-resolution satellite remote sensing of provincial PM2. 5 trends in China from 2001 to 2015. Atmospheric environment, 180, pp. 110–116. Available at: https://doi.org/10.1016/j.atmosenv.2018.02.045
NASA Goddard Space Flight Center, 2022. AERONET Aerosol Robotic Net- work, [online]. Available at: https://aeronet.gsfc.nasa.gov/ [Accessed: 1 Septem- ber 2022].
NASA NEO Nasa Earth Observations, 2022a. Index of /archive/rgb, [online]. Available at: https://neo.gsfc.nasa.gov/archive/rgb/ [Accessed: 1 September 2022].
NASA NEO Nasa Earth Observations, 2022b. Index of /archive/rgb/MODAL2_E_AER_OD, [online]. Available at: https://neo.gsfc.nasa.gov/archive/rgb/MODAL2_E_AER_OD/ [Accessed: 1 September 2022].
Nikezić, D.P., Gršić, Z.J., Dramlić, D.M., Dramlić, S.D., Lončar, B.B. & Dimović, S.D. 2017. Modeling air concentration of fly ash in Belgrade, emitted from thermal power plants TNTA and TNTB. Process Safety and Environmental Protection, 106, pp. 274–283. Available at: https://doi.org/10.1016/j.psep.2016.06.009
Nikezić, D.P., Ramadani, U.R., Radivojević, D.S., Lazović, I.M. & Mirkov, N.S. 2022. Deep Learning Model for Global Spatio-Temporal Image Prediction. Math- ematics, 10(18,art.ID:3392), pp. 1–5. Available at: https://doi.org/10.3390/math10183392
Radivojević, D.S., Mirkov, N.S. & Maletić, S. 2021. Human activity recognition based on machine learning classification of smartwatch accelerometer dataset. FME Transactions, 49(1), pp. 225–232. Available at: https://doi.org/10.5937/fme2101225R
Shi, S., Cheng, T., Gu, X., Guo, H., Wu, Y., Wang, Y., Bao, F. & Zuo, X. 2020. Probing the dynamic characteristics of aerosol originated from South Asia biomass burning using POLDER/GRASP satellite data with relevant accessory technique design. Environment International, 145, art.number:106097. Available at: https://doi.org/10.1016/j.envint.2020.106097
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K. & Woo, W.c. 2015. Con- volutional LSTM Network: A Machine Learning Approach for Precipitation Now- casting. arXiv:1506.04214. Available at: https://doi.org/10.48550/arXiv.1506.04214
Tang, S., Mao, Y., Jones, R.M., Tan, Q., Ji, J.S., Li, N., Shen, J., Lv, Y., Pan, L., Ding, P. et al. 2020. Aerosol transmission of SARS-CoV-2? Evidence, preven- tion and control. Environment international, 144, art.number:106039, pp. 1–10. Available at: https://doi.org/10.1016/j.envint.2020.106039
Vaddi, R. & Manoharan, P. 2020. Hyperspectral image classification using CNN with spectral and spatial features integration. Infrared Physics & Technology, 107, art.number:103296. Available at: https://doi.org/10.1016/j.infrared.2020.103296
Valueva, M.V., Nagornov, N., Lyakhov, P.A., Valuev, G.V. & Chervyakov, N.I. 2020. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and computers in sim- ulation, 177, pp. 232–243. Available at: https://doi.org/10.1016/j.matcom.2020.04.031
Wang, Z., Liu, Y., Hu, M., Pan, X., Shi, J., Chen, F., He, K., Koutrakis, P. & Christiani, D.C. 2013. Acute health impacts of airborne particles estimated from satellite remote sensing. Environment international, 51, pp. 150–159. Available at: https://doi.org/10.1016/j.envint.2012.10.011
Wei, X., Chang, N.B., Bai, K. & Gao, W. 2020. Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology, 50(16), pp. 1640–1725. Available at: https://doi.org/10.1080/10643389.2019.1665944
Xavier, A. 2019. An introduction to ConvLSTM. Medium. [online]. Available at: https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7 [Accessed: 1 September 2022].
You, W., Zang, Z., Zhang, L., Li, Y., Pan, X. & Wang, W. 2016. National- scale estimates of ground-level PM2. 5 concentration in China using geographi- cally weighted regression based on 3 km resolution MODIS AOD. Remote Sens- ing, 8(3, art.ID:184), pp. 1–13. Available at: https://doi.org/10.3390/rs8030184
Zoran, M.A., Savastru, R.S., Savastru, D.M., Tautan, M.N., Baschir, L.A. & Tenciu, D.V. 2021. Exploring the linkage between seasonality of environmental factors and COVID-19 waves in Madrid, Spain. Process Safety and Environmental Protection, 152, pp. 583–600. Available at: https://doi.org/10.1016/j.psep.2021.06.043
Sva prava zadržana (c) 2023 Nikola S. Mirkov, Dušan S. Radivojević, Ivan M. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).