Satellite remote sensing and deep learning for aerosols prediction
Abstract
Introduction/purpose: The paper presents a new state-of-the-art method that involves NASA satellite imagery with the latest deep learning model for a spatiotemporal sequence forecasting problem. Satellite-retrieved aerosol information is very useful in many fields such as PM prediction or COVID-19 transmission. The input data set was MODAL2_E_AER_OD which presents global AOT for every 8 days from Terra/MODIS. The im plemented machine learning algorithm was built with ConvLSTM2D lay ers in Keras. The obtained results were compared with the new CNN LSTM model.
Methods: Computational methods of Machine Learning, Artificial Neural Networks, Deep Learning.
Results: The results show global AOT prediction obtained using satellite digital imagery as an input.
Conclusion: The results show that the ConvLSTM developed model could be used for global AOT prediction, as well as for PM and COVID-19 transmission.
References
Beer, C.G., Hendricks, J., Righi, M., Heinold, B., Tegen, I., Groß, S., Sauer, D., Walser, A. & Weinzierl, B. 2020. Modelling mineral dust emissions and atmo- spheric dispersion with MADE3 in EMAC v2. 54. Geoscientific Model Develop- ment, 13(9), pp. 4287–4303. Available at: https://doi.org/10.5194/gmd-13-4287-2020,2020
Colbeck, I. & Lazaridis, M. 2013. Introduction. In: Colbeck, I. and Lazaridis, M. (Eds.) Aerosol Science. Wiley Online Library. Available at: https://doi.org/10.1002/9781118682555.ch1.
Dey, P., Chaulya, S. & Kumar, S. 2021. Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system. Process Safety and Environmen- tal Protection, 152, pp. 249–263. Available at: https://doi.org/10.1016/j.psep.2021.06.005
Ding, X., Feng, L., Zou, Y. & Zhang, G. 2020. Deep learning aided spectrum prediction for satellite communication systems. IEEE Transactions on Vehicular Technology, 69(12), pp. 16314–16319. Available at: https://doi.org/10.1109/TVT.2020.3043837
Donahue, J., Hendricks, A.L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Darrell, T. & Saenko, K. 2015. Long-term recurrent convolutional networks for visual recognition and description. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). p. . Boston, MA, USA, pp.2625-2634, June 07-12. Available at: https://doi.org/10.1109/CVPR.2015.7298878
Eleftheriadis, K., Gini, M.I., Diapouli, E., Vratolis, S., Vasilatou, V., Fetfatzis, P. & Manousakas, M.I. 2021. Aerosol microphysics and chemistry reveal the COVID19 lockdown impact on urban air quality. Scientific Reports, 11, art.number:14477. Available at: https://doi.org/10.1038/s41598-021-93650-6
Elperin, T., Fominykh, A., Katra, I. & Krasovitov, B. 2017. Modeling of gas adsorption by aerosol plumes emitted from industrial sources. Process Safety and Environmental Protection, 111, pp. 375–387. Available at: https://doi.org/10.1016/j.psep.2017.06.022
Filonchyk, M., Yan, H., Zhang, Z., Yang, S., Li, W. & Li, Y. 2019. Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Scientific reports, 9(art.number:6174), pp. 1–15. Available at: https://doi.org/10.1038/s41598-019-42466-6
Hochreiter, S. & Schmidhuber, J. 1997. Long short-term memory. Neural com- putation, 9(8), pp. 1735–1780. Available at: https://doi.org/10.1162/neco.1997.9.8.1735
Hu, W.S., Li, H.C., Pan, L., Li, W., Tao, R. & Du, Q. 2020. Spatial–spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(6), pp. 4237–4250. Available at: https://doi.org/10.1109/TGRS.2019.2961947
Kumar, N., Chu, A. & Foster, A. 2007. An empirical relationship between PM2. 5 and aerosol optical depth in Delhi Metropolitan. Atmospheric Environment, 41(21), pp. 4492–4503. Available at: https://doi.org/10.1016/j.atmosenv.2007.01.046
Lin, C., Liu, G., Lau, A.K.H., Li, Y., Li, C., Fung, J.C.H. & Lao, X.Q. 2018. High-resolution satellite remote sensing of provincial PM2. 5 trends in China from 2001 to 2015. Atmospheric environment, 180, pp. 110–116. Available at: https://doi.org/10.1016/j.atmosenv.2018.02.045
NASA Goddard Space Flight Center, 2022. AERONET Aerosol Robotic Net- work, [online]. Available at: https://aeronet.gsfc.nasa.gov/ [Accessed: 1 Septem- ber 2022].
NASA NEO Nasa Earth Observations, 2022a. Index of /archive/rgb, [online]. Available at: https://neo.gsfc.nasa.gov/archive/rgb/ [Accessed: 1 September 2022].
NASA NEO Nasa Earth Observations, 2022b. Index of /archive/rgb/MODAL2_E_AER_OD, [online]. Available at: https://neo.gsfc.nasa.gov/archive/rgb/MODAL2_E_AER_OD/ [Accessed: 1 September 2022].
Nikezić, D.P., Gršić, Z.J., Dramlić, D.M., Dramlić, S.D., Lončar, B.B. & Dimović, S.D. 2017. Modeling air concentration of fly ash in Belgrade, emitted from thermal power plants TNTA and TNTB. Process Safety and Environmental Protection, 106, pp. 274–283. Available at: https://doi.org/10.1016/j.psep.2016.06.009
Nikezić, D.P., Ramadani, U.R., Radivojević, D.S., Lazović, I.M. & Mirkov, N.S. 2022. Deep Learning Model for Global Spatio-Temporal Image Prediction. Math- ematics, 10(18,art.ID:3392), pp. 1–5. Available at: https://doi.org/10.3390/math10183392
Radivojević, D.S., Mirkov, N.S. & Maletić, S. 2021. Human activity recognition based on machine learning classification of smartwatch accelerometer dataset. FME Transactions, 49(1), pp. 225–232. Available at: https://doi.org/10.5937/fme2101225R
Shi, S., Cheng, T., Gu, X., Guo, H., Wu, Y., Wang, Y., Bao, F. & Zuo, X. 2020. Probing the dynamic characteristics of aerosol originated from South Asia biomass burning using POLDER/GRASP satellite data with relevant accessory technique design. Environment International, 145, art.number:106097. Available at: https://doi.org/10.1016/j.envint.2020.106097
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K. & Woo, W.c. 2015. Con- volutional LSTM Network: A Machine Learning Approach for Precipitation Now- casting. arXiv:1506.04214. Available at: https://doi.org/10.48550/arXiv.1506.04214
Tang, S., Mao, Y., Jones, R.M., Tan, Q., Ji, J.S., Li, N., Shen, J., Lv, Y., Pan, L., Ding, P. et al. 2020. Aerosol transmission of SARS-CoV-2? Evidence, preven- tion and control. Environment international, 144, art.number:106039, pp. 1–10. Available at: https://doi.org/10.1016/j.envint.2020.106039
Vaddi, R. & Manoharan, P. 2020. Hyperspectral image classification using CNN with spectral and spatial features integration. Infrared Physics & Technology, 107, art.number:103296. Available at: https://doi.org/10.1016/j.infrared.2020.103296
Valueva, M.V., Nagornov, N., Lyakhov, P.A., Valuev, G.V. & Chervyakov, N.I. 2020. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and computers in sim- ulation, 177, pp. 232–243. Available at: https://doi.org/10.1016/j.matcom.2020.04.031
Wang, Z., Liu, Y., Hu, M., Pan, X., Shi, J., Chen, F., He, K., Koutrakis, P. & Christiani, D.C. 2013. Acute health impacts of airborne particles estimated from satellite remote sensing. Environment international, 51, pp. 150–159. Available at: https://doi.org/10.1016/j.envint.2012.10.011
Wei, X., Chang, N.B., Bai, K. & Gao, W. 2020. Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology, 50(16), pp. 1640–1725. Available at: https://doi.org/10.1080/10643389.2019.1665944
Xavier, A. 2019. An introduction to ConvLSTM. Medium. [online]. Available at: https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7 [Accessed: 1 September 2022].
You, W., Zang, Z., Zhang, L., Li, Y., Pan, X. & Wang, W. 2016. National- scale estimates of ground-level PM2. 5 concentration in China using geographi- cally weighted regression based on 3 km resolution MODIS AOD. Remote Sens- ing, 8(3, art.ID:184), pp. 1–13. Available at: https://doi.org/10.3390/rs8030184
Zoran, M.A., Savastru, R.S., Savastru, D.M., Tautan, M.N., Baschir, L.A. & Tenciu, D.V. 2021. Exploring the linkage between seasonality of environmental factors and COVID-19 waves in Madrid, Spain. Process Safety and Environmental Protection, 152, pp. 583–600. Available at: https://doi.org/10.1016/j.psep.2021.06.043
Copyright (c) 2023 Nikola S. Mirkov, Dušan S. Radivojević, Ivan M. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić
This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).