Uticaj prsline na nelinearno ponašanje ojačanog kompozitnog panela
Sažetak
Uvod/cilj: Tokom svog životnog veka, brodovi i avioni su izloženi izuzetnim eksploatacionim i aerodinamičkim opterećenjima koja mogu da izazovu strukturalna oštećenja i prsline koje vremenom rastu i šire se. Produžavanje života oštećenoj strukturi predstavlja veoma važnu oblast istraživanja. S tim u vezi, popravka kompozitnih panela preporučuje se radi vraćanja performansi strukturama sa prslinama.
Metode: Da bi se koncentracija napona na dnu neke prsline svela na najmanju moguću meru, kao i da bi se zaustavio, pa čak i odložio rast prsline, ovom studijom se predlaže dvodimenzionalna analiza pomoću ANSYS softvera kako bi se predvideo uticaj rasta neke prsline na nelinearno ponašanje naprslih ojačanih kompozitnih panela.
Rezultati: Rezultati ove studije biće dobra referenca za poboljšavanje performansi i popravku naprslih kompozitnih panela pomoću učvršćivača.
Zaključak: Preporučuje se korišćenje zakrpa za popravku naprslih panela na osnovu modelovanja prikazanog u ovoj studiji.
Reference
Baker, A.A. 1993. Repair efficiency in fatigue-cracked aluminum components reinforced with boron/epoxy patches. FFEMS – Fatigue & Fracture of Engineering Materials & Structures, 16(7), pp.753-765. Available at: https://doi.org/10.1111/j.1460-2695.1993.tb00117.x.
Baker, A.A., Rose, L.R.F. & Jones, R. 2003. Advances in the Bonded Composite Repair of Metallic Aircraft Structure, 1st Edition. Elsevier Science. ISBN: 9780080522951.
Bayatfar, A., Khedmati, M.R. & Rigo, P. 2014. Residual ultimate strength of cracked steel unstiffened and stiffened plates under longitudinal compression. Thin-Walled Structures, 84, pp.378-392. Available at: https://doi.org/10.1016/j.tws.2014.07.002.
Chue, C.-H., Chang, L.-C. & Tsai, J.-S. 1994. Bonded repair of a plate with inclined central crack under biaxial loading. Composite Structures, 28(1), pp.39-45. Available at: https://doi.org/10.1016/0263-8223(94)90004-3.
Denney, J.J. & Mall, S. 1997. Characterization of disbond effects on fatigue crack growth behavior in aluminum plate with bonded composite patch. Engineering Fracture Mechanics, 57(5), pp.507-525. Available at: https://doi.org/10.1016/S0013-7944(97)00050-7.
Duong, C.N. & Wang, C.H. 2007. Composite Repair: Theory and Design. Elsevier. Available at: https://doi.org/10.1016/B978-0-08-045146-6.X5000-0.
Fesharaki, J.J., Madani, S.G. & Golabi, S. 2016. Effect of stiffness and thickness ratio of host plate and piezoelectric patches on reduction of the stress concentration factor. International Journal of Advanced Structural Engineering, 8, pp.229-242. Available at: https://doi.org/10.1007/s40091-016-0125-x.
Heller, M, Hill, T.G., Williams, J.F. & Jones, R. 1989. Increasing the fatigue life of cracked fastener holes using bonded repairs. Theoretical and Applied Fracture Mechanics, 11(1), pp.1-8. Available at: https://doi.org/10.1016/0167-8442(89)90020-7.
Jones, R., Davis, M., Callinan, R.J. & Mallinson, G.D. 1982. Crack Patching: Analysis and Design. Journal of Structural Mechanics, 10(2), pp.177-190. Available at: https://doi.org/10.1080/03601218208907409.
Jones, R., Molent, L, Baker, A.A. & Davis, M.J. 1988. Bonded repair of metallic components: Thick sections. Theoretical and Applied Fracture Mechanics, 9(1), pp.61-70. Available at: https://doi.org/10.1016/0167-8442(88)90049-3.
Makwana, A.H., Vyas, N. & Barot. R.S. 2021. Numerical investigation of composite patch repair of inclined cracked panel using XFEM. Materials Today: Proceedings, 45(6), pp.5128-5133. Available at: https://doi.org/10.1016/j.matpr.2021.01.643.
Mall, S. & Conley, D.S. 2009. Modeling and validation of composite patch repair to cracked thick and thin metallic panels. Composites Part A: Applied Science and Manufacturing, 40(9), pp.1331-1339. Available at: https://doi.org/10.1016/j.compositesa.2008.08.007.
Naboulsi, S. & Mall, S. 1998. Nonlinear analysis of bonded composite patch repair of cracked aluminum panels. Composite Structures, 41(3-4), pp.303-313. Available at: https://doi.org/10.1016/S0263-8223(98)00052-X.
Naboulsi, S. & Mall, S. 1999. Methodology to analyze aerospace structures repaired with a bonded composite patch. Journal of Strain Analysis, 34(6), pp.395-412. Available at: https://doi.org/10.1243/0309324991513849.
Rose, L.R.F. 1982. A cracked plate repaired by bonded reinforcements. International Journal of Fracture, 18, pp.135-144. Available at: https://doi.org/10.1007/BF00019638.
Shi, X.H., Zhang, J. & Guedes Soares, C. 2017. Experimental study on collapse of cracked stiffened plate with initial imperfections under compression. Thin-Walled Structures, 114, pp.39-51. Available at: https://doi.org/10.1016/j.tws.2016.12.028.
Shi, X.H., Zhang, J. & Guedes Soares, C. 2019. Numerical assessment of experiments on the residual ultimate strength of stiffened plates with a crack. Ocean Engineering, 171, pp.443-457. Available at: https://doi.org/10.1016/j.oceaneng.2018.10.043.
Shi, X., Hu, Z., Zhang, J. & Guedes Soares, C.G. 2021. Ultimate strength of a cracked stiffened panel repaired by CFRP and stop holes. Ocean Engineering, 226, art.number:108850. Available at: https://doi.org/10.1016/j.oceaneng.2021.108850.
Sun, C.T., Klug, G.J. & Arendt, C. 1996. Analysis of cracked aluminum plates repaired with bonded composite patches. AIAA Journal, 34(2), pp.369-374. Available at: https://doi.org/10.2514/3.13073.
Tarn, J.-Q. & Shek, K.-L. 1991. Analysis of cracked plates with a bonded patch. Engineering Fracture Mechanics, 40(6), pp.1055-1065. Available at: https://doi.org/10.1016/0013-7944(91)90170-6.
Xu, M. & Guedes Soares, C.G. 2012. Assessment of the ultimate strength of narrow stiffened panel test specimens. Thin-Walled Structures, 55, pp.11-21. Available at: https://doi.org/10.1016/j.tws.2012.02.006.
Xu, M. & Guedes Soares, C.G. 2013. Experimental study on the collapse strength of wide stiffened panels. Marine Structures, 30, pp.33-62. Available at: https://doi.org/10.1016/j.marstruc.2012.10.003.
Xu, M., Garbatov, Y. & Guedes Soares, C. 2014. Residual ultimate strength assessment of stiffened panels with locked cracks. Thin-Walled Structures, 85, pp.398-410. Available at: https://doi.org/10.1016/j.tws.2014.09.011.
Xu, M. & Guedes Soares, C.G. 2021. Numerical study on the influence of experimental conditions on the collapse behaviour of stiffened panels. Ocean Engineering, 220, art.number:108410. Available at: https://doi.org/10.1016/j.oceaneng.2020.108410.
Sva prava zadržana (c) 2024 Houda Beghdad, Nacer Rahal, Abdelaziz Souici, Sara Zatir, Khaled Benmahdi, Halima Aouad
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).