Uticaj prsline na nelinearno ponašanje ojačanog kompozitnog panela

  • Houda Beghdad Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0001-3548-5138
  • Nacer Rahal Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir; Univerzitet prirodnih nauka i tehnologije, Laboratorija za mašinske strukture i stabilnost konstrukcije, Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0002-0400-8360
  • Abdelaziz Souici Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir; Univerzitet prirodnih nauka i tehnologije, Laboratorija za mašinske strukture i stabilnost konstrukcije, Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-3845-7409
  • Sara Zatir Univerzitet „Tahri Mohamed”, Odeljenje za arhitekturu i urbanizam, Bešar, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-6187-3441
  • Khaled Benmahdi Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8244-5817
  • Halima Aouad Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-1999-1489
Ključne reči: kompozitni paneli, oštećena struktura, rast prsline, ANSYS, koncentracija napona

Sažetak


Uvod/cilj: Tokom svog životnog veka, brodovi i avioni su izloženi izuzetnim eksploatacionim i aerodinamičkim opterećenjima koja mogu da izazovu strukturalna oštećenja i prsline koje vremenom rastu i šire se. Produžavanje života oštećenoj strukturi predstavlja veoma važnu oblast istraživanja. S tim u vezi, popravka kompozitnih panela preporučuje se radi vraćanja performansi strukturama sa prslinama.

Metode: Da bi se koncentracija napona na dnu neke prsline svela na najmanju moguću meru, kao i da bi se zaustavio, pa čak i odložio rast prsline, ovom studijom se predlaže dvodimenzionalna analiza pomoću ANSYS softvera kako bi se predvideo uticaj rasta neke prsline na nelinearno ponašanje naprslih ojačanih kompozitnih panela.

Rezultati: Rezultati ove studije biće dobra referenca za poboljšavanje performansi i popravku naprslih kompozitnih panela pomoću učvršćivača. 

Zaključak: Preporučuje se korišćenje zakrpa za popravku naprslih panela na osnovu modelovanja prikazanog u ovoj studiji.

Reference

Baker, A.A. 1993. Repair efficiency in fatigue-cracked aluminum components reinforced with boron/epoxy patches. FFEMS – Fatigue & Fracture of Engineering Materials & Structures, 16(7), pp.753-765. Available at: https://doi.org/10.1111/j.1460-2695.1993.tb00117.x.

Baker, A.A., Rose, L.R.F. & Jones, R. 2003. Advances in the Bonded Composite Repair of Metallic Aircraft Structure, 1st Edition. Elsevier Science. ISBN: 9780080522951.

Bayatfar, A., Khedmati, M.R. & Rigo, P. 2014. Residual ultimate strength of cracked steel unstiffened and stiffened plates under longitudinal compression. Thin-Walled Structures, 84, pp.378-392. Available at: https://doi.org/10.1016/j.tws.2014.07.002.

Chue, C.-H., Chang, L.-C. & Tsai, J.-S. 1994. Bonded repair of a plate with inclined central crack under biaxial loading. Composite Structures, 28(1), pp.39-45. Available at: https://doi.org/10.1016/0263-8223(94)90004-3.

Denney, J.J. & Mall, S. 1997. Characterization of disbond effects on fatigue crack growth behavior in aluminum plate with bonded composite patch. Engineering Fracture Mechanics, 57(5), pp.507-525. Available at: https://doi.org/10.1016/S0013-7944(97)00050-7.

Duong, C.N. & Wang, C.H. 2007. Composite Repair: Theory and Design. Elsevier. Available at: https://doi.org/10.1016/B978-0-08-045146-6.X5000-0.

Fesharaki, J.J., Madani, S.G. & Golabi, S. 2016. Effect of stiffness and thickness ratio of host plate and piezoelectric patches on reduction of the stress concentration factor. International Journal of Advanced Structural Engineering, 8, pp.229-242. Available at: https://doi.org/10.1007/s40091-016-0125-x.

Heller, M, Hill, T.G., Williams, J.F. & Jones, R. 1989. Increasing the fatigue life of cracked fastener holes using bonded repairs. Theoretical and Applied Fracture Mechanics, 11(1), pp.1-8. Available at: https://doi.org/10.1016/0167-8442(89)90020-7.

Jones, R., Davis, M., Callinan, R.J. & Mallinson, G.D. 1982. Crack Patching: Analysis and Design. Journal of Structural Mechanics, 10(2), pp.177-190. Available at: https://doi.org/10.1080/03601218208907409.

Jones, R., Molent, L, Baker, A.A. & Davis, M.J. 1988. Bonded repair of metallic components: Thick sections. Theoretical and Applied Fracture Mechanics, 9(1), pp.61-70. Available at: https://doi.org/10.1016/0167-8442(88)90049-3.

Makwana, A.H., Vyas, N. & Barot. R.S. 2021. Numerical investigation of composite patch repair of inclined cracked panel using XFEM. Materials Today: Proceedings, 45(6), pp.5128-5133. Available at: https://doi.org/10.1016/j.matpr.2021.01.643.

Mall, S. & Conley, D.S. 2009. Modeling and validation of composite patch repair to cracked thick and thin metallic panels. Composites Part A: Applied Science and Manufacturing, 40(9), pp.1331-1339. Available at: https://doi.org/10.1016/j.compositesa.2008.08.007.

Naboulsi, S. & Mall, S. 1998. Nonlinear analysis of bonded composite patch repair of cracked aluminum panels. Composite Structures, 41(3-4), pp.303-313. Available at: https://doi.org/10.1016/S0263-8223(98)00052-X.

Naboulsi, S. & Mall, S. 1999. Methodology to analyze aerospace structures repaired with a bonded composite patch. Journal of Strain Analysis, 34(6), pp.395-412. Available at: https://doi.org/10.1243/0309324991513849.

Rose, L.R.F. 1982. A cracked plate repaired by bonded reinforcements. International Journal of Fracture, 18, pp.135-144. Available at: https://doi.org/10.1007/BF00019638.

Shi, X.H., Zhang, J. & Guedes Soares, C. 2017. Experimental study on collapse of cracked stiffened plate with initial imperfections under compression. Thin-Walled Structures, 114, pp.39-51. Available at: https://doi.org/10.1016/j.tws.2016.12.028.

Shi, X.H., Zhang, J. & Guedes Soares, C. 2019. Numerical assessment of experiments on the residual ultimate strength of stiffened plates with a crack. Ocean Engineering, 171, pp.443-457. Available at: https://doi.org/10.1016/j.oceaneng.2018.10.043.

Shi, X., Hu, Z., Zhang, J. & Guedes Soares, C.G. 2021. Ultimate strength of a cracked stiffened panel repaired by CFRP and stop holes. Ocean Engineering, 226, art.number:108850. Available at: https://doi.org/10.1016/j.oceaneng.2021.108850.

Sun, C.T., Klug, G.J. & Arendt, C. 1996. Analysis of cracked aluminum plates repaired with bonded composite patches. AIAA Journal, 34(2), pp.369-374. Available at: https://doi.org/10.2514/3.13073.

Tarn, J.-Q. & Shek, K.-L. 1991. Analysis of cracked plates with a bonded patch. Engineering Fracture Mechanics, 40(6), pp.1055-1065. Available at: https://doi.org/10.1016/0013-7944(91)90170-6.

Xu, M. & Guedes Soares, C.G. 2012. Assessment of the ultimate strength of narrow stiffened panel test specimens. Thin-Walled Structures, 55, pp.11-21. Available at: https://doi.org/10.1016/j.tws.2012.02.006.

Xu, M. & Guedes Soares, C.G. 2013. Experimental study on the collapse strength of wide stiffened panels. Marine Structures, 30, pp.33-62. Available at: https://doi.org/10.1016/j.marstruc.2012.10.003.

Xu, M., Garbatov, Y. & Guedes Soares, C. 2014. Residual ultimate strength assessment of stiffened panels with locked cracks. Thin-Walled Structures, 85, pp.398-410. Available at: https://doi.org/10.1016/j.tws.2014.09.011.

Xu, M. & Guedes Soares, C.G. 2021. Numerical study on the influence of experimental conditions on the collapse behaviour of stiffened panels. Ocean Engineering, 220, art.number:108410. Available at: https://doi.org/10.1016/j.oceaneng.2020.108410.

Objavljeno
2024/09/28
Rubrika
Originalni naučni radovi